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Abstract

This paper outlines a framework for a diognosis of a complex system with
uncertain information. Sensor validation ploys a vital role in the ability of the
overall system to correctly determine the stote of a system monitored by
imperfect sensors. Here, emphases are put on the heuristic technology and
post-processor for reasoning. Heuristic Sensor Validation {HSV) exploits deeper
knowledge about parameter interaction within the plant to cull sensor faults
from the dota stream. Finally the modified probability distributions and
validated data are used as input to the reasoning scheme which is the run-
time version of the influence diagram. The output of the influence diagram
is a diagnostic mapping from the symptoms or sensor readings to a
determination of likely failure modes. Once likely failure modes are identified,
a detailed diognostic knowledge bose suggests corrective aclions to improve
performance. This framework for o diagnostic expert system with sensor
validation and reasoning under uncertainty applies in HEATXPRT™ a data-
driven on-line expert system for diagnosing heat rate degradation problems
in fossil power plants [1].
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1. Introduction

Sensor validation is an important preproces-
sor of any reasoning scheme since it provides
necessary information for a system [3][10}{11].
Here, we are concerned with two area that we
have developed so far. First is the Heuristic
Sensor Validation (HSV), which provides the
information regarding the system level. Second

is the Influence Diagram based Knowledge

Base (InDiaKB}, which is the backbone of the

reasoning scheme. Schematic of information

flow is shown in Figure 1.

Heuristic Sensor Validation is a component
of the overall sensor validation system which
combines evidence from multiple sources to
separate sensor faults out of the process data
used by the heat rate diagnostic expert system.
Various methods of obtaining statistical

features from a set of semsor data take place
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Figure 1. Schematic Diagram of Main Functional Blocks of HEATXPRT™ [10]
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in Algorithmic Sensor Validation (ASV) [10].
These same features are used by HSV, coupled
1o knowledge of plant connectivity and opera-
tion. While an ASV analysis on an individual
sensor provides important insight regarding
validity, synthesizing individual parameter and
overall system information is & vital part of
sensor validation. HSV does this by analyzing
groups of related sensors to determine whether
observed deviations are process based or are
misrepresentations due to sensor faults [11).

The following techniques are used as theoret-
ical schemes in HSV in order to identify sensor
faults:

1. Redundancy of sensor readings

2. Connectivity of parameters and subsys-

tems

3. Expected behavior of subsystems

4. First principles in a subsystem

3. Heuristic knowledge by experts

HSV’s role is to eliminate faulty contribu-
tzons 10 the influence diagram knowledge base
which are caused by sensor failure.

The depicted framework ends with validated
data and updated probability distributions being
input into the Influence Diagram Knowledge
Base (InDiaKB) [2][5][6]). Sets of discrete
marginal and conditional probability distribu-
tions define the parametric form of the
influence diagram which can be tailored o the
cperating history of the target utility. Quantif-
ication of the probabilistic relationships is
based on statistical data where available, e.g.

maintenance data, and on the experts experien-

]

tial knowledge, including the experts assess-
ment of the conditional probabilities of failures
given ranges of sensor readings [4][71[12]. This
InDiaKB has been reduced to a run-time matrix
version by transforming influence diagrams
constructed from a causal point of view into
equivalent sensor driven form. It is followed
by a secondary detailed knowledge base
developed entirely by Sargent & Lundy En-
gineers which contains more specific knowledge
and recommendations. Since the knowledge
and the information within the influence
diagrams are usually plant specific, the In-
DiaKB should be different from plant to plant.
introduce  the InDiaKB of
HEATXPRT™ and provides an example influ-
ence diagram of heat rate failure in a feedwater
heater [1].

Here, we

2. Heuristic Sensor Validation

2.1 Overview of the Database and Basic
Reasoning Process in Heuristic Sen-
sor Validation

All sensors, parameters, and subsystems in

HSV are encoded objects in an internal data
validation database. These objects are created
from templates called classes and are stored as
lists of class instances. Assignment of sensors
to parameters and parameters to subsystems is
specified in the configuration file. Also given
by the configuration database are connective
relationships among parameters and subsystems,

Necessary properties of the sensor object are
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as follows:

1. Sensor readings in one-minute average

I

Sample period average and statistical

features

3. Calculated parameter values from the
sensor readings (target values)

. Manual input values

. Actual values

. Replacement and warmning limits

-~ & o

. Probability associated with sensor readings

(High, Normal, Low)

8. Sensor confidence measure assigned in

ASV

9. Trend analysis

10. Redundant sensors

Probability and sensor confidence values are
compared to thresholds stored for each param-
eter. These comparisons generate warnings that
are used to focus analysis in HSV; each
warning directs the system to assemble and
assess the subsystem model containing the
wamning. For warnings of parameters which
have associated upstream and/or downstream
neighbors, analysis 1s carried out on the
adjoining subsystems as well. Sensor redundan-
cy is exploited for neighboring parameters and
cases where several sensors are used to

measure a single parameter.

2.2 Subsystem Models

The output of ASV is a set of statistical
features along with probability distributions and
confidence estimates for each semsor. Each

sensor is associated with a parameter. Several

sensors tnay be associated with the same

parameter. Each parameter is, in turn, associat-
ed with a subsystem. As a result, the set of
statistical features can be expanded to cover a
subsystemn and model parameter interactions
within it.

As discussed in the earlier paper, unit gross
generation is used to predict the readings of
sensors measuring a parameter {10]. ASV
compares actual statistical features of sample
data to expert-set thresholds (functions of gross
generation) to determine a probability distribu-
tion for the sensor. Additionally ASV uses
parameter reference distributions to measure the
confidence behind each sensor sample set.
These techniques are meant to provide a quick
means of eliminating gross sensor failures and
to help focus deeper, more costly analysis to
be performed in HSV. It is the role of HSV
to ‘know’ how parameters and the sensors
measuring them should be grouped and to
‘know’ the wvalid interactions within these
groupings.

In addition, there did not exist the wealth of
knowledge about operations that had been
assumed. This opened to door for a different
approach to subsystem models, one that is
generic, applying to groupings of any size
within the plant. The basis of the model is the
Gaussian probability distribution used to model
individual parameters expanded to handle
vectors of parameter values:
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where:

p = the probability density function

X = the vector of subsystem parameter values
(normalized)

R = the covariance matrix

An argument was made in the earlier paper
that a Gaussian (or normal) distribution
represents the normalized system performance
with acceptably low error [10]). In HSV, this
argument is the basis of the subsystern model;
normalized parameter values for a subsystem
create a single, multivariate Gaussian distribu-
tion with the covariance encoding the interac-
tions. The properties of this distribution are
very desirable: using a single probability
density function to represent a subsystem
provides a means of analyzing the effects of
changing any single parameter with respect to
others. The following sections serve to illustrate
the use of the multivariate Gaussian probability
distribution throughout the HSV module.

2.2.1 Establishing the Distribution

The first step in the development of
heuristics within the HSV module is analysis
of actual plant data. Simply selecting a model
like Eq. {1) and assuming that it models the
data would not vield a good result. As
discussed in the paper, individual sensors tend
to follow a Gaussian distribution about their
expected operating peints [10). This led to the
development of the ASV methodology for
statistically characterizing the performance of
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each sensor as a distribution and the application
of this distribution to the tasks of producing a
discrete probability distribution and sensor
confidence. In HSV, we strive to do the same
sorts of analyses except that now several
sensors must be considered at once. To start,
we again establish the dependence of parameter
values on gross gemeration {load). Figures 2
and 3 show that a quadratic polynomial curve
fit can be used to predict parameter values
given load.
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The performance of the plant can be
analyzed with respect to its predicted behavior
cescribed by a cubic curve fit for each
operating parameier. Is the difference between
observed and predicted values systematic or is
it random? If it is random, there is not much
that can be done beyond ASY; HSV becomes
just a set of specialized rules instead of a
flexible approach to data validation. In order
to decide whether performance deviation is
systematic, we can loock at an example from
the feedwater heater prototype system. Figures
< through & plot three temperatures in the
feedwater heater normalized for predicted
behavior {simply subtracting the curve fits out
of the data stream). They show that there is a
clear systematic deviation from the predicted
performance curves. The set of probability
distributions used to approximate the behavior
of individual sensors can be extended to sets
of sensors such as these through modeling this
systematic behavior.

Of note in Figures 4 through 6 is the nice
clustering of the data. This shows that there is
high covariance of each parameter with respect
to the others. This is an impertant aspect of
the data that can be exploited through the
zbove mentioned multivariate Gaussian proba-
bility distribution.

The data from Figures 4 through 6 can be
summarized nicely by a mean vector of length
three and a covariance matrix of dimension

three by three. These are:
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100035, 0621 0.331 0.189,
7= 0.0068', R = 0,331 0.569 0.339] (2)
100037, 10.189 0.339 0.849)

Thus, a model for a subsystem can be
encoded using only a covariance matrix whose
dimension is that of the number of parameters
in the model (the mean vector is zero for
values that have been adjusted for expected
(target) value). This encoding scheme is not
handicapped by its simplicity: it handles errors
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m the curve fits, seasonal operating changes,
and missing data with aplomb. In cases where
data does not cluster as well as seen in Figure
4 through 6, sums of multivariate Gaussian
distributions can be used. Thus, we have
previded a robust and flexible means of
handling expertise about subsystem operation

within a power plant.

2.2.2 The Maximum A Posteriori (MAP)
Parameter Value Estimate

The multivariate Gaussian probability
distribution that captures systematic in-
teractions of parameters within a subsys-
tern can be used in many ways. Sensor
faults propagated through ASV to HSV
are those which are independent from
senisor to sensor {e.g. calibration drift or
isolation tube leakage). Gross errors will
be detected and corrected in ASV. The
covariance matrix of Eq. (2) shows no
entry in which the covariance is near zero

(relative to the variance values on the

diagonal); any two of the three values can
be used to predict the other. Looking at
the plots gives one an idea of how to
predict a missing outlet temp value given
inlet temp and/or drain temp. However,
when more than three or four parameters
are present in the distribution the task
is not so simple. The computer must have
a way of determining which parameter
values are valid and which ones are
faulty. This is done by taking each of the
parameters one at a time and using ali
of the other parameters and the subsys-
tem model as predictive information. The
goal of the prediction is to maximize the
probability (the density function of Eq.
(1)) by assigning the best value for the
parameter without changing any other
parameters values. This is done by using
the Maximum A Posteriori Estimate.
Starting with Eq. (1), its partial deriva-
tive with respect to the parameter being
predicted (x) is taken and set equal to
zero:
TR
2 2 €
0= a—xiP(xJ T D (3}
Q2rxy||RI|?
Taking all other parameter values as
input constants, this becomes:
E-:i,-[agl.z+b'g;‘f+c]
0 — @
2 X, ¥ I
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where:

-
a=R;

b 3 R
- IRy
j=i

Taking the derivative:

Yaztibxec)
efi% ke
— )

0= 2ax,+b;) -
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Solving for the value which maximizes
probability:

MAP(xi)=-2b—" (6)
a;

A MAP estimate is made for each x in
the parameter vector x. The estimate is
then substituted in the probability densi-
ty function to provide a normalization
factor for the probability of the observed

parameter value:

This new goodness vector represents a
set of measures of consistency of the
parameter values with respeet to the
most probable substitution that can be
made for each. Eq. {7) can be used to
focus attention on parameters where a
change in value would greatly increase
the overall probability of the operation of
the subsystem being studied. The an-

alysis 15 directed toward single parame-

ters because sensor failures are assumed
to occur independent of other sensor
failures within a subsystem. Process devi-
ations, on the other hand, produce effects
in several interacting parameters. Thus,
process deviations would produce high
goodness values where adjustments to
single parameter values would not appre-
ciably increase the probability of the
operation of the subsystem. These point
bears reiteration as they are the back-
bone of HSV:

1) system models contain information
about parameter interactions within
a piece of equipment.

2) Many of these interactions hold in
the presence of a process deviation.

3) In deteciable sensor faults at least
one of these interactions will be
violated. (A sensor fault is mnot
detectable if it mimics closely a valid
process deviation.)

4) A goodness measure consisting of a
ratio of the probability of the oper-
ating point as measured to the
probability of the operating point
substituting a MAP estimate for a
parameter provides a means of as-
sessing the value of changing a

single parameter.

2.3 Redundancy
Section 2.2.2 demonstrates the use of the
MAP estimate in HSV but does not give any
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indication of how it can be used in cases where
redundant sensor information exists, We must
go back io the goodness measure of Eq. (7)
to understand the application of sensor redun-
dancy to the problem. This measure is a vector
of numbers between 0 (low normalized proba-
bility) and 1 {point coinciding with the MAP)
“hat is used to focus attention on parameters
lying furthest from their expected values. The
aroblem is: How do we apply knowledge of
sensor redundancy to improve information
about a parameter?

One method available in HSV maintains a
lic to actual sensors, a preference expressed by
experts in plant operations. In most instances,
there will exist a sensor measuring each
parameter that is preferred (for operational
reasons) over other sensors. This sensor is the
default and is used unless it appears to have
failed. If a redundant sensor supports the value
given by the primary sensor, analysis is
performed on other sensors with low goodness
measures. If the redundant sensor is significant-
ly closer to the MAP estimate produced by the
data from other sensors in the model, it is
substituted for the faulty sensor. This redundant
sensor then becomes the primary sensor for the
parameter it measures. The rationale for this
methed of redundancy handling is:

1} The subsystem model contains informa-
tion about each parameter that is indepen-
dent of process fauits.

2) Sensor faults of the type diagnosed during
HSV are independent {i.e. there are no

common causes for sets of sensors to drift
from calibration).

3) Sensor faults of the type diagnosed during
HSV are relatively infrequent,

4) The above conditions indicate a low
probability of concurrent multiple sensor
failure,

This is a Maximum Likelihood (ML) esti-
mate that assumes that one of the available
sensors is measuring the actual value. Other
available sources of information are ignored in
this case, leading to a potential loss of integrity.

A second methodology used for the applica-
tion of redundant sensor information involves
Bayes’ rule for updating continuous probability
distributions. One component of this methed is
a continuous probability distribution is formed
which represents the probability density of
sensor readings given an actual value [8]. This
would include such factors as instrument
accuracy (including calibration drift), failure
mode types, and failure mode probabilities. An
example of such a distribution based on

Gaussian distributions is:

ty? (e
rag 2 . - r 0‘;%
. Rilvy e
ple|y)= (lp)————+ p— (8)
2zVo, Qxyo,
where:

x = Sensor value

y = Parameter actual value

P, = Probability of failure

7 . = Standard deviation due to instrument

accuracy
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X = Sensor value for failure mode
Ty = Standard deviation of failure mode

values

Figure 7 demonstrates a situation where there
is a relatively inaccurate sensor with a failure
mode that results in a constant reading much
lower than expected. This might be the case
for a temperature probe or an electronic fault.
Some other cases would be represented as a
probable offset from the actual reading, In all
cases the offset 15 relatively large, usually far
outside the normal process swings of the plang,
A Gaussian distribution is chosen for this case,
but any parameterized distribution can be used.

P(X

X Y
Figure 7. Probability distribution of sensor

readings given the correct value, Y

Just as in the MAP estimate, the subsystem
model is used to forrn a probability density
function for the parameter being analyzed using
the values of other parameters within the model
as evidence. In this case, however, a probabil-
ity distribution over x; is the resuit of applying
subsystem knowledge. The probability density
function becomnes:

ea;[a.rzfmg,.w]
p(x!-) VN (9
Qay||R|]

where:
a=Rj;
b= ;R?.‘x‘?
i
ixi
Unlike the case of a MAP estimate where a
single maximum value of the distribution is
used, other characteristics of the distribution
are captured. Figure 8 shows sets of system
model-generated distributions for situations
where there is a varying degree of covariance,
Note that the three curves shown have then
same MAP estimate point but differ greatly in
quality. It seems that predictive quality of the
subsystem model should be used in determining
the best sensor value. The ML estimate that
requires an actual sensor to read the parameter

value cannot exploit this information.

P (Y |subsystem model)

Parameter Values
Figure 8. Probability distribution of process
variable, Y, given the subsystem model and

other parameter values.

Bayes’ rule is applied to the above distribu-
tions to create a new probability density
function given all sensor values recorded for
the parameter under investigation and its

subsystem model. The general form of Bayes



nile for this case is given:

_pX|Vp(¥)
pyY | X) 70X) {10}
where:

p(X) = jip(X|Y)p(Y)dY

p(X|Y) = The probability density function
of X given Y

p{x) = The probability distribution of X

Y = The actual value of the parameter

X

The value of the sensor reading

Sensor readings can be independent of each
given the value of the parameter being sensed
{i.e. a sensor's measured value depends only
orn the actual value, not other sensors’ measure-
ments), so Eq. (10) can be applied to multiple

redundant sensors:

) = 2K X P0G ¥)p(r)

Y| XX, SO6X)

_ P p(K Yoply) an
P(X1X3)

Eq. (11) is used to combine the probability
density function for N redundant sensors Eg.
(8) and the probability density function for the
actual value generated by the subsystern model
Eq. (9). Eq. (12) is the resulting probability
density functior: for the actual parameter value.
Faor simplicity, the second term of Eq. (8} has
been excluded. This term represents the proba-
biiity of sensor failure and can reasonably be
eliminated from consideration after the ASV
analysis that has already taken place (absolute
failures are weeded out by ASV). In addition,.
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all scaling constants have been grouped togeth-
er:
2
3 [ @Y p¥ecs ;J (};—f) —l
=T e (12)

p(Y |XIXN) = Ke
In order to determine the most probable
value for the parameter and use this as a virtual
sensor value, we need only set the derivative

to zero and solve:

b N
0=Ymm. a+0;“ i TEEG;“ (13
p Y X
5',_21;;2 ]
Ymax - N
a+az
ace

Note that this result becomes the MAP
estimate given in Eq. (10) for the case of zero
sensors. Note also that in the parameters a and
b, the characteristics of the subsysterm model
are inciuded in the estimate. Additionally, a
large number of accurate sensors will complete-
ly overwhelm the MAP estimate. Cases in
between these extremes will produce an
optimal fusion of sensor and subsystem: model.
The .Bayesian combiration of evidence for
parameter value provides a means of vsing all
redundant sensors rather than just picking one
of them. The only drawback is a semantic one:
an operator would prefer to be told which of
several sensors is most accurate rather than be
given a value that accounts for all sensor
readings but does not represent a single sensor.
For this reason the prototype HSV contains
both the simple ML algorithm along with the
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more accurate Bayesian scheme presented here.
In another section, a method for combining
sensor unceriainties based on sensor confidence

measures is also proposed.

2.4 Connectivity

Another form of knowledge available to the
HSV module is the arrangement of equipment
within the power plant. This knowledge adds
a second form of redundancy to the system.
Each parameter in the system contains informa-
tion about any direct upstream or downstream
neighbors. In the event that the goodness
measure falls below the acceptable threshold,
these neighbors are consulted in combination
with redundant sensors. Because the normalized
values for each parameter-neighbor pair will
1eflect the expected offset in actual value and
the parameters measure the same variable type,
an upstream or downstream neighbor can be ’
plugged’ directly into the subsystem model of
a suspect semsor. The methods described in
Section 2.3 can then be applied using a close
reighbor as a redundant sensor.

Connectivity within the plant can be exploit-
ed to yield an even higher level of redundancy
because each neighboring parameter is also
contained within a separate subsystem model.
This model is used to compare MAP estimates
of parameters along equipment interfaces to
gauge agreement. By moving from one subsys-
tzm to the next, HSV can operate on symptoms
of sensor faults and trace them to a root cause

somewhere else. This 1s a an important aspect

of HSV; initial analysis can be localized to
only those parameters that show heat rate
warnings because the source of a false positive
warning can be identified wherever it might
be. HSV techniques are not initially used in
subsystemns that do not show warning states but
will propagate throughout subsystem connec-
tions until each warning is validated or

explained by a sensor fault.

2.5 Heuristics

Heuristics can be defined as the specific
experiential knowledge one might have after a
long engagement with the operation of a
specific domain. This knowledge is differenti-
ated from statistical features, first principle
relationships, or connectivity of specific param-
eters as we have explained so far. Since this
knowledge is acquired through an operators
experience rather than a certain calculation, it
is difficult to translate into a quantified metric.
One approach in representing heuristics is
through hybrid knowledge bases of rules and
objects, For our application where much of the
knowledge is about plant connectivity and
instrument location the object oriented database
provides most of the encoding.

In Artificial Intelligence, the representation
of knowledge is a combination of data
structures and interpretive procedures that leads
to an inference of behavior. To structure a
problem-solving procedure, one usually uses a
multi-dimensional approach. This is composed

of interaction, deduction, and induction compo-



nents. Interaction signifies the participation of
some other knowledge representation in the
same problem-selving task. Deduction is the
rule that we use during problem-solving,
Induction is the data-driven discovery needed
in the process. We specify their representation
as interaction, deduction, and induction rules.
If a system uses these declarative rules in
reasoning a behavior, we call this a rule-based
svstem. Since a rule-based system has an IF~,
THEN~ structure, it is best suited to represent-
irg deterministic, goal-oriented knowledge such
as a logic tree or a fault tree containing no
uncertain parameters.

A data structure organizes parameter and
state information about the system into a form
that is easily accessed and modified. We
specify the basic core of information as an
object. If we use these objects in representing
a data structure, we call it an object-oriented
system. An object-oriented system is more
appropﬁate for understanding a hierarchical
relationship of parameters. It usually classifies
the parameters with the same properties as a
class, which then makes it possible for the
kriowledge process to maneuver through several
krowledge islands. A certain class shares a
series of inheritance of properties among
objects to give a systematic knowledge
representation,

We introduce here a Aybrid knowledge base
that manipulates the merits of rule-based and
object-oriented systems. We transform the

parameters into objects and a set of parameters
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with common properties into a class. A set of
rules is applied to the specific problem domain
to identify the designated goal. By doing so,
it becomes possible to accelerate the knowledge
processing time and to identify the previously
unnoticed hierarchical relationships of parame-
ters. The following sections will illustrate how
we define the objects and classes in the power
plant domain and how we apply these concepts
to sub-domains such as a feedwater heater and

a boiler.

3. Influence diagram knowledge base

Diagnosis is the process of determining the
state of a system based on system observable.
It is sometimes viewed as an inverse mapping
of the causal behaviors of the system; this
mapping rarely enjoying a one (o one correspon-
dence. The correspondence between observable
and failures becomes even more difficult in
situations where there is some uncertainty in
both the mappings and in the observable
themselves. In HEATXPRT™ an influence
diagram knowledge base is used to represent
and process this uncertainty.

Influence diagrams have proven successful
in complex decision making problems with
uncertainty, by graphically representing the
diagnostic problem domain through simple
topological symbols and arcs between them.
Knowledge engineering schemes allow them to
exploit both first principle knowledge of a

system along with subjective assessments based
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on experiential knowledge. Bayes Theorem is
the backbone of the influence diagram infer-
ence procedure. The role of influence diagrams
in diagnostic expert systems is to identify the
necessary relationships between parameters in
the domain and represent and exploit condition-
al independence where possible. Thus the
operators expertise, the first principles, and the
sensory data are integrated into the three
representational levels of the diagram: the
topological, numerical, and functional levels.
The topological level of the influence diagram
is a simple representation of the problem using
a combination of nodes and arcs, where nodes
represents critical parameters and decisions,
and arcs representing the functional relation-
ships among parameters. The lack of an arc is
the most important information at the topolog-
ical level, signifying a statement of conditional
independence. The nature of the influences is
determined at the functional level and further
guantified at the numerical level. Bayesian
probabilities are the mathematical functional
measure used in HEATXPRT™.

There are many approaches to seolving
influence diagrams and Bayes belief networks
(influence diagrams without decision nodes).
The IDES (Influence Diagram Based Expert
System) developed at UC Berkeley, was used
as a preprocessor to create the run-lime version
of the influence diagram knowledge base m
HEATXPRT™ [5][6][7][9]. This is stored as a
matrix of numerical solutions for every combi-

nation of qualitative ranges on the input sensor

values.

3.1 Generating a Generic Influence Di-
agram Knowledge Base

The UC Berkeley team, Sargent & Lundy
Engineers, and experts from collaborating
utilities have developed an influence diagram
knowledge base of a generic feedwater heater.
Although the goal of the diagnostic procedure
is to infer heat rate degradation in the system
from the measured sensory values, the influ-
ence diagram model was constructed in a
causal direction. There are four major reasons
for this: 1} numerous studies have shown that
humans are poor Bayesians and that the
integrity of subjective probabilities assessed for
this kind of diagnostic mapping is questionable,
2) the causal mapping allows the use of first
principle information in constructing the model,
3) a causal model allows for parametrizing the
prior probabilities of failures to take into
account individuat utility an power plant
mainienance, reliability and heat rate perfor-
mance histories, and thus 4) the causal mapping
enables easier updating of the underlying prior
and conditional probabilities as more operating
experience is gained, Much of the influence
diagram knowledge base was derived from
previously developed logic frees and first
principle relationships between measured param-
eters {sensors) and calculated parameters. Util-
ity experts and consulting engineers identified
the critical variables and the relationships

between measured parameters and heat rate
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cegradation failure modes. Seven major failure
rodes were identified as knowledge islands for
further diagnostic and remediation analysis in
tre rtest of the knowledge base: 1) non-
condensable gases, 2) tube leaks, 3) tube
blockage, 4) tubes fouled internally, 5) exces-
sive venting/steam leaks, 6) baffle of bypass
valve leak, and 7) feedwater heater out of
service, The major knowledge acquisition tasks
were:

Identifying major failure modes for heat rate

degradation

Identifying critical parameters indicating heat

rate failures

Discretizing the state nodes representing

continuous variables

Constructing arcs  denoting  dependencies

among nodes

Assessing arc  directions and conditional

independence

Deriving the meaning of the diagram for
explanation and use in the rest of the
HEATXPRT™ knowledge base

An example influence diagram is shown in
Figure 9. The mode!l is causal in the sense that
the likelithood of achieving ceriain sensor value
ranges is conditioned on the failure state of the
system. In this example, the failore mode is
iternal fouling of the tubes in the feedwater
heater. Major influences between measured
parameters and the failure are identified by the
arcs and conditional independence are implied
by the missing arcs in the diagram. Conditional

and prior probabilities were assessed from

FW Heater Parameters

Failur Node

Internaliy _

L e

Figure 9. Influence Diagram for Tubes Fouled
Internally Failure

experts and from statistical data supplied by
EPRI.

The names of the nodes are meant to relate
to an ‘alarm’ condition, in respect to heat rate
degradation, of the variable represented by each
node. A discretization of the wvalues of
measured or calculated parameters into high,
normal, and low states, again in regards to heat
rate degradation, was determined to be ade-
quate and could be efficiently generated in the
ASV module. Faults are represented as either
being TRUE or FALSE.

3.2 Testing of Uncertainty Propagation in
Influence Diagrams
Verification of an influence diagram should
include comparison of its results with the actual
diagnosis of experts over various sets of
conditions. The only verification of influence
diagram so far, however, is to test for two
desirable characteristics with appropriate sensi-

tivity to critical and non-critical parameters.
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‘When there is more than one failure with
similar symptoms, the ability to distinguish
which parameter is critical to the actual
inference is indicative of one of the desirable
characteristics of an influence diagram. Using
this criterion, influence diagrams are evaluated
for two failures: Tube Fouled Internally (Figure
9} and Tube Blockages (Figure 10), Later, the
resulting probabilities of each failure in the
feedwater heater are catculated over a different

set of parameter states.

FW Heater Parameters

FW Outlet
T
{ Sat Temp

e ‘

ot )

Figure 10. Influence Diagram for Tube Blockage

Failur Node

( Ext Press

Two failures, Tube Fouled Internally and
Tube Blockage, display similar symptoms
according to the heat rate logic tree used by
experts. They are:

1. Increased tube bundle pressure drop.

2. Decreased feedwater flow.

3. Decreased extraction pressure drop.

4, Decreased feedwater outlet temperature.

Variations in critical parameter states for
Tube Fouled Internally failure, as shown in
Table 1, demonstrate the sensitivity trends of

the corresponding influence diagram. For this
example, the states of feedwater heater shell
pressure and feedwater heater drain temperature
are set differently. One of the major symptoms
common to both failures, decreased feedwater
heater outlet temperature is set to low.
Referring to Table 1, the resulting probabilities
for each failure are calculated for four different
scenarios.

H set to high, the feedwater heater shell
pressure (Case 1) and drain temperature (Case
2) play important roles in diagnosing the Tube
Fouled Internally failure. These may be com-
pared with Case 3 where the two parameters
are set to normal. As expected, the resulting
probability for TRUE is greater for Cases 1
and 2 than for Case 3. As shown in Case 4,
the resulting probability of the failure TRUE
is further increased as we change the state to
high for both parameters. This illustrates the
sensitivity of the influence diagram to changes
in the states of these critical parameters.

The variation of the feedwater heater drain
temperature demonstrates that the results from
the influence diagram are insensitive to varia-
tions in non-critical parameters, as variations
have little impact on the resulting probability
of Tube Blockage, as shown in Table 1 by
comparing Cases 1 and 3. This outcome is
verified by experts who have concluded that
the heater drain temperature is not strongly
correlated with the Tube Bilockage failure.
Rather, the feedwater heater shell pressure is

the key parameter in diagnosing this failure as
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Table 1. Calculation of Resulting Probabitities for Two Failures with Similar Symptoms

Parameters Case 1 case 2 case 3 case 4
Turbine Extraction Pres. Normal Normal Normal Normal
FW Heater Shell Pres. Normal High Normal High
FW Heater Drain Temp. High Normal Normal High
FW Inlet Temp. Normal Normal Normal Normal
FW Outlet Temp. Low Low Low Low
Sat. Stm. Temp. Normal Normal Normal Norma!
Failures[TRUE, FALSE]

Tubes Fouled Internally [0.35, 0.65] f0.35, 0.65) [0.01, 0.99] [0.87, 0.03]
Tube Blockage [0.01, 0.99] [0.24, 0.76) [0.01, 0.99] [0.24, 0.76]

shown by comparing Cases 2 and 3 in Table
1.

4. Conclusion

Heuristic Sensor Validation has been present-
ed as a means of applying plant knowledge to
the task of eliminating errors in the InDiaKB
cata stream due to faulty sensors. The frame-
work for HSV is a unified one in which objects
rzpresenting plant subsystems, operating param-
eters, and sensors are combined in a generic
fashion. This provides a portable platform in
which HSV can adapt to a changing application
environment.

Several strategies have been posed as valu-
able parts of the HSV module. Probabilistic
subsystem models form the basis of applying
connectivity

sensor redundancy and plant

knowledge to sensor validation. Again, a

unified theory has been presented which is
flexible, robust, and includes the bonus of
automated adaptation to changing plant operat-
ing characteristics.

Additionally, a means of applying location
specific rules and first principles has been
provided for future development. Examples of
sitrations where both of these techniques might
be useful has been given. However, if the
system is applied to a plant where the
instrumentation has been properly calibrated,
these rules will be implicitly coded within
subsystem models. In plants where instramen-
tation contains typical calibration errors and
equipment operates under less than ideal
circumstances, the probabilistic framework
maintains effectiveness, This would not be the
case for the more cumbersome rules involved
with first principle analysis or expert heuristics.

These wiil prove to be much more useful in
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subsystems where instrumentation is sparse or
subsystem models weak. This has not been the
case with the subsystems targeted for the
prototype system, so these aspects have be de-
emphasized.

Robustness and sensitivity on the developed
influence diagrams have been tested using the
on-line data. From the knowledge acquisition
by the experts, prior and conditional probabil-
ities representing the relationships among the
parameters were retricved and fine-tuned,
Influence diagram methodology has been
proved to be a reliable technique in implement-
ing probabilistic reasoning and uncertainty
propagation. However, a continuous effort
should be done in improving these probabilities

0 puarantee & successful reasoning.
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