• 제목/요약/키워드: Sensor Localization

검색결과 679건 처리시간 0.024초

WSN Lifetime Analysis: Intelligent UAV and Arc Selection Algorithm for Energy Conservation in Isolated Wireless Sensor Networks

  • Perumal, P.Shunmuga;Uthariaraj, V.Rhymend;Christo, V.R.Elgin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권3호
    • /
    • pp.901-920
    • /
    • 2015
  • Wireless Sensor Networks (WSNs) are widely used in geographically isolated applications like military border area monitoring, battle field surveillance, forest fire detection systems, etc. Uninterrupted power supply is not possible in isolated locations and hence sensor nodes live on their own battery power. Localization of sensor nodes in isolated locations is important to identify the location of event for further actions. Existing localization algorithms consume more energy at sensor nodes for computation and communication thereby reduce the lifetime of entire WSNs. Existing approaches also suffer with less localization coverage and localization accuracy. The objective of the proposed work is to increase the lifetime of WSNs while increasing the localization coverage and localization accuracy. A novel intelligent unmanned aerial vehicle anchor node (IUAN) is proposed to reduce the communication cost at sensor nodes during localization. Further, the localization computation cost is reduced at each sensor node by the proposed intelligent arc selection (IAS) algorithm. IUANs construct the location-distance messages (LDMs) for sensor nodes deployed in isolated locations and reach the Control Station (CS). Further, the CS aggregates the LDMs from different IUANs and computes the position of sensor nodes using IAS algorithm. The life time of WSN is analyzed in this paper to prove the efficiency of the proposed localization approach. The proposed localization approach considerably extends the lifetime of WSNs, localization coverage and localization accuracy in isolated environments.

Probabilistic Support Vector Machine Localization in Wireless Sensor Networks

  • Samadian, Reza;Noorhosseini, Seyed Majid
    • ETRI Journal
    • /
    • 제33권6호
    • /
    • pp.924-934
    • /
    • 2011
  • Sensor networks play an important role in making the dream of ubiquitous computing a reality. With a variety of applications, sensor networks have the potential to influence everyone's life in the near future. However, there are a number of issues in deployment and exploitation of these networks that must be dealt with for sensor network applications to realize such potential. Localization of the sensor nodes, which is the subject of this paper, is one of the basic problems that must be solved for sensor networks to be effectively used. This paper proposes a probabilistic support vector machine (SVM)-based method to gain a fairly accurate localization of sensor nodes. As opposed to many existing methods, our method assumes almost no extra equipment on the sensor nodes. Our experiments demonstrate that the probabilistic SVM method (PSVM) provides a significant improvement over existing localization methods, particularly in sparse networks and rough environments. In addition, a post processing step for PSVM, called attractive/repulsive potential field localization, is proposed, which provides even more improvement on the accuracy of the sensor node locations.

Quantization-aware Sensor Selection for Source Localization in Sensor Networks

  • Kim, Yoon-Hak
    • Journal of information and communication convergence engineering
    • /
    • 제9권2호
    • /
    • pp.155-160
    • /
    • 2011
  • In distributed source localization where sensors transmit measurements to a fusion node, we address the sensor selection problem where the goal is to find the best set of sensors that maximizes localization accuracy when quantization of sensor measurements is taken into account. Since sensor selection depends heavily upon rate assigned to each sensor, joint optimization of rate allocation and sensor selection is required to achieve the best solution. We show that this task could be accomplished by solving the problem of allocating rates to each sensor so as to minimize the error in estimating the position of a source. Then we solve this rate allocation problem by using the generalized BFOS algorithm. Our experiments demonstrate that the best set of sensors obtained from the proposed sensor selection algorithm leads to significant improvements in localization performance with respect to the set of sensors determined from a sensor selection process based on unquantized measurements.

센서융합을 이용한 모바일로봇 실내 위치인식 기법 (An Indoor Localization of Mobile Robot through Sensor Data Fusion)

  • 김윤구;이기동
    • 로봇학회논문지
    • /
    • 제4권4호
    • /
    • pp.312-319
    • /
    • 2009
  • This paper proposes a low-complexity indoor localization method of mobile robot under the dynamic environment by fusing the landmark image information from an ordinary camera and the distance information from sensor nodes in an indoor environment, which is based on sensor network. Basically, the sensor network provides an effective method for the mobile robot to adapt to environmental changes and guides it across a geographical network area. To enhance the performance of localization, we used an ordinary CCD camera and the artificial landmarks, which are devised for self-localization. Experimental results show that the real-time localization of mobile robot can be achieved with robustness and accurateness using the proposed localization method.

  • PDF

A Collaborative and Predictive Localization Algorithm for Wireless Sensor Networks

  • Liu, Yuan;Chen, Junjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권7호
    • /
    • pp.3480-3500
    • /
    • 2017
  • Accurate locating for the mobile target remains a challenge in various applications of wireless sensor networks (WSNs). Unfortunately, most of the typical localization algorithms perform well only in the WSN with densely distributed sensor nodes. The non-localizable problem is prone to happening when a target moves into the WSN with sparsely distributed sensor nodes. To solve this problem, we propose a collaborative and predictive localization algorithm (CPLA). The Gaussian mixture model (GMM) is introduced to predict the posterior trajectory for a mobile target by training its prior trajectory. In addition, the collaborative and predictive schemes are designed to solve the non-localizable problems in the two-anchor nodes locating, one-anchor node locating and non-anchor node locating situations. Simulation results prove that the CPLA exhibits higher localization accuracy than other tested predictive localization algorithms either in the WSN with sparsely distributed sensor nodes or in the WSN with densely distributed sensor nodes.

무선 센서 네트워크에서 이동성 로봇을 이용한 센서 위치 인식 기법에 관한 연구 (A Localization Scheme Using Mobile Robot in Wireless Sensor Networks)

  • 김우현
    • 한국산업융합학회 논문집
    • /
    • 제10권2호
    • /
    • pp.105-113
    • /
    • 2007
  • Accurate and low-cost sensor localization is a critical requirement for the deployment of wireless sensor networks in a wide variety of application. Sensor position is used for its data to be meaningful and for energy efficient data routing algorithm especially geographic routing. The previous works for sensor localization utilize global positioning system(GPS) or estimate unknown-location nodes position with help of some small reference nodes which know their position previously. However, the traditional localization techniques are not well suited in the senor network for the cost of sensors is too high. In this paper, we propose the sensor localization method with a mobile robot, which knows its position, moves through the sensing field along pre-scheduled path and gives position information to the unknown-location nodes through wireless channel to estimate their position. We suggest using the sensor position estimation method and an efficient mobility path model. To validate our method, we carried out a computer simulation, and observed that our technique achieved sensor localization more accurately and efficiently than the conventional one.

  • PDF

A Fine-grained Localization Scheme Using A Mobile Beacon Node for Wireless Sensor Networks

  • Liu, Kezhong;Xiong, Ji
    • Journal of Information Processing Systems
    • /
    • 제6권2호
    • /
    • pp.147-162
    • /
    • 2010
  • In this paper, we present a fine-grained localization algorithm for wireless sensor networks using a mobile beacon node. The algorithm is based on distance measurement using RSSI. The beacon node is equipped with a GPS sender and RF (radio frequency) transmitter. Each stationary sensor node is equipped with a RF. The beacon node periodically broadcasts its location information, and stationary sensor nodes perceive their positions as beacon points. A sensor node's location is computed by measuring the distance to the beacon point using RSSI. Our proposed localization scheme is evaluated using OPNET 8.1 and compared with Ssu's and Yu's localization schemes. The results show that our localization scheme outperforms the other two schemes in terms of energy efficiency (overhead) and accuracy.

Information-Theoretic Approaches for Sensor Selection and Placement in Sensor Networks for Target Localization and Tracking

  • Wang Hanbiao;Yao Kung;Estrin Deborah
    • Journal of Communications and Networks
    • /
    • 제7권4호
    • /
    • pp.438-449
    • /
    • 2005
  • In this paper, we describes the information-theoretic approaches to sensor selection and sensor placement in sensor net­works for target localization and tracking. We have developed a sensor selection heuristic to activate the most informative candidate sensor for collaborative target localization and tracking. The fusion of the observation by the selected sensor with the prior target location distribution yields nearly the greatest reduction of the entropy of the expected posterior target location distribution. Our sensor selection heuristic is computationally less complex and thus more suitable to sensor networks with moderate computing power than the mutual information sensor selection criteria. We have also developed a method to compute the posterior target location distribution with the minimum entropy that could be achieved by the fusion of observations of the sensor network with a given deployment geometry. We have found that the covariance matrix of the posterior target location distribution with the minimum entropy is consistent with the Cramer-Rao lower bound (CRB) of the target location estimate. Using the minimum entropy of the posterior target location distribution, we have characterized the effect of the sensor placement geometry on the localization accuracy.

Point In Triangle Testing Based Trilateration Localization Algorithm In Wireless Sensor Networks

  • Zhang, Aiqing;Ye, Xinrong;Hu, Haifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권10호
    • /
    • pp.2567-2586
    • /
    • 2012
  • Localization of sensor nodes is a key technology in Wireless Sensor Networks(WSNs). Trilateration is an important position determination strategy. To further improve the localization accuracy, a novel Trilateration based on Point In Triangle testing Localization (TPITL)algorithm is proposed in the paper. Unlike the traditional trilateration localization algorithm which randomly selects three neighbor anchors, the proposed TPITL algorithm selects three special neighbor anchors of the unknown node for trilateration. The three anchors construct the smallest anchor triangle which encloses the unknown node. To choose the optimized anchors, we propose Point In Triangle testing based on Distance(PITD) method, which applies the estimated distances for trilateration to reduce the PIT testing errors. Simulation results show that the PIT testing errors of PITD are much lower than Approximation PIT(APIT) method and the proposed TPITL algorithm significantly improves the localization accuracy.

COAG 특징과 센서 데이터 형상 기반의 후보지 선정을 이용한 위치추정 정확도 향상 (Improvement of Localization Accuracy with COAG Features and Candidate Selection based on Shape of Sensor Data)

  • 김동일;송재복;최지훈
    • 로봇학회논문지
    • /
    • 제9권2호
    • /
    • pp.117-123
    • /
    • 2014
  • Localization is one of the essential tasks necessary to achieve autonomous navigation of a mobile robot. One such localization technique, Monte Carlo Localization (MCL) is often applied to a digital surface model. However, there are differences between range data from laser rangefinders and the data predicted using a map. In this study, commonly observed from air and ground (COAG) features and candidate selection based on the shape of sensor data are incorporated to improve localization accuracy. COAG features are used to classify points consistent with both the range sensor data and the predicted data, and the sample candidates are classified according to their shape constructed from sensor data. Comparisons of local tracking and global localization accuracy show the improved accuracy of the proposed method over conventional methods.