• Title/Summary/Keyword: Sensor Assessment

Search Result 391, Processing Time 0.029 seconds

Laser Welding of Seal Tube for Instrumented Irradiation Fuel Test (계장핵연료 조사시험용 실튜브 레이저용접기술)

  • Kim Soo-Sung;Lee Chul-Yong;Kim Woong-Ki;Park Geun-Il;Koh Jinh-Yun;Seo Jun-Seok
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.43-48
    • /
    • 2005
  • This work was carried out to obtain sound welds and to select a most suitable binary metal joint among three different dissimilar binary metal combinations such as Zr-4/Ta, Mo/Ta and Ti/Ta(seal tube/sensor sheath) joints fur the instrumented nuclear fuel irradiation test. To do this, Taguchi experimental method was employed to optimize the experimental data. In addition, metallography, micro-focus x-ray radiography and hardness test were conducted to examine the welds. From the weld bead appearance, penetration depth and bead width as well as weld defects standpoint, Zr-4/Ta joint is suggested for the circumferential joining between a seal tube and a sensor sheath. The optimized welding parameters based on Zr-4/Ta joint are suggested as well.

A Study on Prediction of Fatigue Life using MFC Sensors (MFC센서를 이용한 피로수명예측에 관한 연구)

  • Lee, Ji-Hoon;Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.32-36
    • /
    • 2013
  • The large-scale structures have the possibility that there are defects such as cracks due to stress concentration caused by geometric discontinuities in the structure. In this respect, the assessment of fatigue life and the development of structural health monitoring(SHM) are very important. Fatigue design of structure is typically accomplished either using a set of stress cycle (S-N) data obtained from fatigue tests or using the fracture mechanics approach. The stress intensity factor(SIF) is required for the estimation of fatigue crack propagation life from the linear elastic fracture mechanics (LEFM) perspective. In this study, Macro Fiber Composie(MFC) sensor for the measurement of SIF of two dimensional cracks is used. The SIF based on the piezoelectric constitutive law and fracture mechanics are calculated. The measured values of the SIF are later used for the prediction of the crack propagation life. In this study, the measured value of the SIF and the fatigue life are compared with the theoretical results.

Land cover classification of a non-accessible area using multi-sensor images and GIS data (다중센서와 GIS 자료를 이용한 접근불능지역의 토지피복 분류)

  • Kim, Yong-Min;Park, Wan-Yong;Eo, Yang-Dam;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.493-504
    • /
    • 2010
  • This study proposes a classification method based on an automated training extraction procedure that may be used with very high resolution (VHR) images of non-accessible areas. The proposed method overcomes the problem of scale difference between VHR images and geographic information system (GIS) data through filtering and use of a Landsat image. In order to automate maximum likelihood classification (MLC), GIS data were used as an input to the MLC of a Landsat image, and a binary edge and a normalized difference vegetation index (NDVI) were used to increase the purity of the training samples. We identified the thresholds of an NDVI and binary edge appropriate to obtain pure samples of each class. The proposed method was then applied to QuickBird and SPOT-5 images. In order to validate the method, visual interpretation and quantitative assessment of the results were compared with products of a manual method. The results showed that the proposed method could classify VHR images and efficiently update GIS data.

Recent Advancements in Smart Bandages for Wound Healing

  • Ventaka Ramesh Ragnaboina;Tae-Min Jang;Sungkeun Han;Suk-Won Hwang
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.357-369
    • /
    • 2023
  • Wound healing is a complex and dynamic process, making the accurate and timely assessment of skin wounds a crucial aspect of effective wound care management, especially for chronic wounds. Unlike conventional wound dressings that simply cover the wound area once some form of medicine is administered onto the wound, recent studies have introduced versatile approaches to smart wound dressings capable of interacting with wound fluids to monitor physicochemical and pathological parameters to determine the wound healing status. Such electrochemical wound dressings can be integrated with on-demand, closed-loop drug delivery or stimulation systems and ultimately expanded into an ideal technological platform for the prevention, treatment, and management of skin wounds or illnesses. This article briefly reviews the wound healing mechanism and recent strategies for effective wound care management. Specifically, this review discusses the following aspects of smart wound dressings: sensor-integrated smart bandages to detect wound biomarkers, smart bandages developed to accelerate wound healing, and wireless, closed-loop automatic (on-demand) wound healing systems. This review concludes by providing future perspectives on effective wound care management.

Intelligent Evaluation Algorithm for Identifying Hazards in Public Restrooms Using Virtual Reality and Sensor Data (가상현실과 센서데이터를 활용하는 공중화장실 위험요소 지능형 평가 알고리즘)

  • Shin-Sook Yoon;Jeong-Hwa Song
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.473-482
    • /
    • 2024
  • This study utilized virtual reality to construct a simulated public restroom environment to identify potential hazards. The objective was to discern actual risks in real-world public restrooms through this virtual setup. During the virtual restroom experience, data from the built-in 3-axis accelerometer and gyroscope sensors of testor's smart phones were collected. Analysis of this data helped in identifying spatio temporal factors impacting the users. The determination of these factors as risk elements was based on an evaluation algorithm grounded in data analysis.

Developments of Space Radiation Dosimeter using Commercial Si Radiation Sensor (범용 실리콘 방사선 센서를 이용한 우주방사선 선량계 개발)

  • Jong-kyu Cheon;Sunghwan Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.367-373
    • /
    • 2023
  • Aircrews and passengers are exposed to radiation from cosmic rays and secondary scattered rays generated by reactions with air or aircraft. For aircrews, radiation safety management is based on the exposure dose calculated using a space-weather environment simulation. However, the exposure dose varies depending on solar activity, altitude, flight path, etc., so measuring by route is more suggestive than the calculation. In this study, we developed an instrument to measure the cosmic radiation dose using a general-purpose Si sensor and a multichannel analyzer. The dose calculation applied the algorithm of CRaTER (Cosmic Ray Telescope for the Effects of Radiation), a space radiation measuring device of NASA. Energy and dose calibration was performed with Cs-137 662 keV gamma rays at a standard calibration facility, and good dose rate dependence was confirmed in the experimental range. Using the instrument, the dose was directly measured on the international line between Dubai and Incheon in May 2023, and it was similar to the result calculated by KREAM (Korean Radiation Exposure Assessment Model for Aviation Route Dose) within 12%. It was confirmed that the dose increased as the altitude and latitude increased, consistent with the calculation results by KREAM. Some limitations require more verification experiments. However, we confirmed it has sufficient utilization potential as a cost-effective measuring instrument for monitoring exposure dose inside or on personal aircraft.

Assessment of soil moisture-vegetation-carbon flux relationship for agricultural drought using optical multispectral sensor (다중분광광학센서를 활용한 농업가뭄의 토양수분-식생-이산화탄소 플럭스 관계 분석)

  • Sur, Chanyang;Nam, Won-Hob
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.721-728
    • /
    • 2023
  • Agricultural drought is triggered by a depletion of moisture content in the soil, which hinders photosynthesis and thus increases carbon dioxide (CO2) concentrations in the atmosphere. The aim of this study is to analyze the relationship between soil moisture (SM) and vegetation activity toward quantifying CO2 concentration in the atmosphere. To this end, the MODerate resolution imaging spectroradiometer (MODIS), an optical multispectral sensor, was used to evaluate two regions in South Korea for validation. Vegetation activity was analyzed through MOD13A1 vegetation indices products, and MODIS gross primary productivity (GPP) product was used to calculate the CO2 flux based on its relationship with respiration. In the case of SM, it was calculated through the method of applying apparent thermal inertia (ATI) in combination with land surface temperature and albedo. To validate the SM and CO2 flux, flux tower data was used which are the observed measurement values for the extreme drought period of 2014 and 2015 in South Korea. These two variables were analyzed for temporal variation on flux tower data as daily time scale, and the relationship with vegetation index (VI) was synthesized and analyzed on a monthly scale. The highest correlation between SM and VI (correlation coefficient (r) = 0.82) was observed at a time lag of one month, and that between VI and CO2 (r = 0.81) at half month. This regional study suggests a potential capability of MODIS-based SM, VI, and CO2 flux, which can be applied to an assessment of the global view of the agricultural drought by using available satellite remote sensing products.

Estimation of GHG emission and potential reduction on the campus by LEAP Model (LEAP 모델을 이용한 대학의 온실가스 배출량 및 감축잠재량 분석)

  • Woo, Jeong-Ho;Choi, Kyoung-Sik
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.409-415
    • /
    • 2012
  • Post-kyoto regime has been discussing with the GHG reduction commitment. GHG energy target management system also has been applied for the domestic measures in the country. Universities are major emission sources for GHG. It is very important for campus to built the GHG inventory system and estimate the potential GHG emission reduction. In general, GHG inventory on the campus was taken by the IPCC guidance with the classification of scope 1, 2, and 3. Electricity was the highest portion of GHG emission on the campus as 5,053.90 $tonsCO_2eq/yr$ in 2009. Manufacturing sector was the second high emission and meant GHG in laboratory. Potential GHG reduction was planned by several assumptions such as installation of occupancy sensor, exchanging LED lamp and photovoltaic power generation. These reduction scenarios was simulated by LEAP model. In 2020, outlook of GHG emission was estimated by 17,435.98 tons of $CO_2$ without any plans of reduction. If the reduction scenarios was applied in 2020, GHG emission would be 16,507.60 tons of $CO_2$ as 5.3% potential reduction.

A Review of Measuring Sensors for Reactor Vessel Internals Comprehensive Vibration Assessment Program in Advanced Power Reactor 1400 (APR1400 원자로 내부구조물 종합진동평가프로그램용 측정센서 검토)

  • Ko, Do-Young;Lee, Jae-Gon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.47-55
    • /
    • 2011
  • Reactor vessel internals comprehensive vibration assessment program(RVI CVAP) is one of the necessary tests to ensure the safety of nuclear power plants. RVI CVAP of U.S. nuclear regulatory commission regulatory guide 1.20(U.S. NRC R.G. 1.20) consists of the analysis, measurement and inspection. One of the core technologies of the measurement program for RVI CVAP is to select suitable sensors because the measurement is conducted during the critical path of the construction period of nuclear power plants. Therefore, we analyzed RVI thermal-hydraulic and structure design data of Palo Verde nuclear power plant(U.S.), Yonggwang nuclear power plant(Korea) and APR1400 and researched measuring sensors used in them; moreover, we investigated sensors used for measurement of RVI CVAP for the last 20 years throughout the world. Based on these results, we selected suitable measuring sensors for RVI CVAP in advanced power reactor 1400(APR1400).

Development of the Activity Posture Classifier for Ubiquitous Health Care (유비쿼터스 헬스케어를 위한 활동상태 분류기 개발)

  • Kim, Se-Jin;Chung, Wan-Young;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.703-706
    • /
    • 2007
  • The real-time monitoring about the activity of the human provides useful information about the activity quantity and an ability. This study developed a system for human physical activity assessment in ambulatory monitoring using portable sensing device combining a tri-axial accelerometer and wireless sensor node. This real-time system is able to identify several postures, posture transitions and movements with classification algorithm. In addition, this system also features fall detection capability. The results of the assessment for evaluating the performance of the system show high identification accuracy.

  • PDF