• Title/Summary/Keyword: Sensing threshold

Search Result 267, Processing Time 0.028 seconds

Adaptive Cooperative Spectrum Sensing Based on SNR Estimation in Cognitive Radio Networks

  • Ni, Shuiping;Chang, Huigang;Xu, Yuping
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.604-615
    • /
    • 2019
  • Single-user spectrum sensing is susceptible to multipath effects, shadow effects, hidden terminals and other unfavorable factors, leading to misjudgment of perceived results. In order to increase the detection accuracy and reduce spectrum sensing cost, we propose an adaptive cooperative sensing strategy based on an estimated signal-to-noise ratio (SNR). Which can adaptive select different sensing strategy during the local sensing phase. When the estimated SNR is higher than the selection threshold, adaptive double threshold energy detector (ED) is implemented, otherwise cyclostationary feature detector is performed. Due to the fact that only a better sensing strategy is implemented in a period, the detection accuracy is improved under the condition of low SNR with low complexity. The local sensing node transmits the perceived results through the control channel to the fusion center (FC), and uses voting rule to make the hard decision. Thus the transmission bandwidth is effectively saved. Simulation results show that the proposed scheme can effectively improve the system detection probability, shorten the average sensing time, and has better robustness without largely increasing the costs of sensing system.

Application of Multiple Threshold Values for Accuracy Improvement of an Automated Binary Change Detection Model

  • Yu, Byeong-Hyeok;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.271-285
    • /
    • 2009
  • Multi-temporal satellite imagery can be changed into a transform image that emphasizes the changed area only through the application of various change detection techniques. From the transform image, an automated change detection model calculates the optimal threshold value for classifying the changed and unchanged areas. However, the model can cause undesirable results when the histogram of the transform image is unbalanced. This is because the model uses a single threshold value in which the sign is either positive or negative and its value is constant (e.g. -1, 1), regardless of the imbalance between changed pixels. This paper proposes an advanced method that can improve accuracy by applying separate threshold values according to the increased or decreased range of the changed pixels. It applies multiple threshold values based on the cumulative producer's and user's accuracies in the automated binary change detection model, and the analyst can automatically extract more accurate optimal threshold values. Multi-temporal IKONOS satellite imagery for the Daejeon area was used to test the proposed method. A total of 16 transformation results were applied to the two study sites, and optimal threshold values were determined using accuracy assessment curves. The experiment showed that the accuracy of most transform images is improved by applying multiple threshold values. The proposed method is expected to be used in various study fields, such as detection of illegal urban building, detection of the damaged area in a disaster, etc.

Optimal Strategies for Cooperative Spectrum Sensing in Multiple Cross-over Cognitive Radio Networks

  • Hu, Hang;Xu, Youyun;Liu, Zhiwen;Li, Ning;Zhang, Hang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3061-3080
    • /
    • 2012
  • To improve the sensing performance, cooperation among secondary users can be utilized to collect space diversity. In this paper, we focus on the optimization of cooperative spectrum sensing in which multiple cognitive users efficiently cooperate to achieve superior detection accuracy with minimum sensing error probability in multiple cross-over cognitive radio networks. The analysis focuses on two fusion strategies: soft information fusion and hard information fusion. Under soft information fusion, the optimal threshold of the energy detector is derived in both noncooperative single-user and cooperative multiuser sensing scenarios. Under hard information fusion, the optimal randomized rule and the optimal decision threshold are derived according to the rule of minimum sensing error (MSE). MSE rule shows better performance on improving the final false alarm and detection probability simultaneously. By simulations, our proposed strategy optimizes the sensing performance for each cognitive user which is randomly distributed in the multiple cross-over cognitive radio networks.

Moon Phase based Threshold Determination for VIIRS Boat Detection

  • Kim, Euihyun;Kim, Sang-Wan;Jung, Hahn Chul;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.69-84
    • /
    • 2021
  • Awareness of boats is a main issue in areas of fishery management, illegal fishing, and maritime traffic, etc. For the awareness, Automatic Identification System (AIS) and Vessel-Pass System (V-PASS) have been widely used to collect the boat-related information. However, only using these systems makes it difficult to collect the accurate information. Recently, satellite-based data has been increasingly used as a cooperative system. In 2015, U.S. National Oceanic and Atmospheric Administration (NOAA) developed a boat detection algorithm using Visible Infrared Imaging Radiometer Suite (VIIRS) Day & Night Band (DNB) data. Although the detections have been widely utilized in many publications, it is difficult to estimate the night-time fishing boats immediately. Particularly, it is difficult to estimate the threshold due to the lunar irradiation effect. This effect must be corrected to apply a single specific threshold. In this study, the moon phase was considered as the main frequency of this effect. Considering the moon phase, relational expressions are derived and then used as offsets for relative correction. After the correction, it shows a significant reduction in the standard deviation of the threshold compared to the threshold of NOAA. Through the correction, this study can set a constant threshold every day without determination of different thresholds. In conclusion, this study can achieve the detection applying the single specific threshold regardless of the moon phase.

Dynamic Carrier Sensing Threshold Scheme based on SINR for Throughput Improvement in MANET (MANET에서 처리율 향상을 위한 SINR 기반 동적 캐리어 감지 임계값 방법)

  • Lee, Hyun-No;Kim, Dong-Hoi
    • Journal of Digital Contents Society
    • /
    • v.15 no.3
    • /
    • pp.319-326
    • /
    • 2014
  • IEEE 802.11 WLAN uses CSMA/CA(Carrier Sense Multiple Access/Collision Avoidance) method in MAC(Media Access Control) protocol, and through the carrier sense checks whether other users use the channel during the data transmission to avoid the data collision. Currently, IEEE 802.11 standard recommends the use of a fixed threshold which gives an impact on carrier sensing range. However, the existing scheme using the fixed threshold causes the operation of network to be inefficiency owing to the mobility in MANET(Mobile Ad hoc NETwork). In this paper, we found the better network throughput to be obtained by applying the proposed scheme, which chooses properly the carrier sensing threshold and transmission rate considering SINR(Signal to Interference-plus-Noise Ratio), to the MANET.

Adaptive Energy Detection for Spectrum Sensing in Cognitive Radio (인지 무선 시스템에서 스펙트럼 감지를 위한 적응 에너지 검파)

  • Lim, Chang-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.8
    • /
    • pp.42-46
    • /
    • 2010
  • Energy detection based spectrum sensing compares the energy of a received signal from a primary user with a detection threshold and decides whether it is active or not in the frequency band of interest. Here the detection threshold depends on not only a target false alarm probability but also the level of the noise energy in the band. So, if the noise energy changes, the detection threshold must be adjusted accordingly to maintain the given false alarm probability. Most previous works on energy detection for spectrum sensing are based on the assumption that noise energy is known a priori. In this paper, we present a new energy detection scheme updating its detection threshold under the assumption that the noise is white, and analyze its detection performance. Analytic results show that the proposed scheme can maintain a target false alarm rate without regard to the noise energy level and its spectrum sensing performance gets better as the time bandwidth product of the signal used to estimate the noise energy increases.

Region of Interest Detection Based on Visual Attention and Threshold Segmentation in High Spatial Resolution Remote Sensing Images

  • Zhang, Libao;Li, Hao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1843-1859
    • /
    • 2013
  • The continuous increase of the spatial resolution of remote sensing images brings great challenge to image analysis and processing. Traditional prior knowledge-based region detection and target recognition algorithms for processing high resolution remote sensing images generally employ a global searching solution, which results in prohibitive computational complexity. In this paper, a more efficient region of interest (ROI) detection algorithm based on visual attention and threshold segmentation (VA-TS) is proposed, wherein a visual attention mechanism is used to eliminate image segmentation and feature detection to the entire image. The input image is subsampled to decrease the amount of data and the discrete moment transform (DMT) feature is extracted to provide a finer description of the edges. The feature maps are combined with weights according to the amount of the "strong points" and the "salient points". A threshold segmentation strategy is employed to obtain more accurate region of interest shape information with the very low computational complexity. Experimental statistics have shown that the proposed algorithm is computational efficient and provide more visually accurate detection results. The calculation time is only about 0.7% of the traditional Itti's model.

A Defective Detector Suppression in the Short Wave Infrared Band of SPOT/VEGETATION-1

  • Han, Kyung-Soo;Kim, Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.403-409
    • /
    • 2003
  • Since SPOT4 satellite contained VEGETATION 1 sensor launched, the noise in VEGETATION data was occasionally arisen a difficulty for the data traitement. Blind line noise types were studied in VEGETATION-l short wave infrared channel(SWIR). In order to provide a precis product, the procedure for removing this noise is strongly recommended. In the case that the blind values are clearly distinguished from contamination-free values a simple threshold method was applied, while a changeable threshold method was used for the blind value mixed with contamination-free values. New algorithm presented in this study is consists of two method for each type of SWIR blind. After removing blind line, there were again some residual pixels of blind, because the threshold is not determinated sufficiently low. Lower threshold could remove the blind line as well as the contamination-free pixels. Nevertheless, the results showed a good qualitative improvement as compared with other algorithm.

Wireless Energy-Harvesting Cognitive Radio with Feature Detectors

  • Gao, Yan;Chen, Yunfei;Xie, Zhibin;Hu, Guobing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4625-4641
    • /
    • 2016
  • The performances of two commonly used feature detectors for wireless energy-harvesting cognitive radio systems are compared with the energy detector under energy causality and collision constraints. The optimal sensing duration is obtained by analyzing the effect of the detection threshold on the average throughput and collision probability. Numerical examples show that the covariance detector has the optimal sensing duration depending on an appropriate choice of the detection threshold, but no optimal sensing duration exists for the ratio of average energy to minimum eigenvalue detector.

Development of Cloud Detection Algorithm for Extracting the Cloud-free Land Surface from Daytime NOAA/AVHRR Data (NOAA/AVHRR 주간 자료로부터 지면 자료 추출을 위한 구름 탐지 알고리즘 개발)

  • 서명석;이동규
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.239-251
    • /
    • 1999
  • The elimination process of cloud-contaminated pixels is one of important steps before obtaining the accurate parameters of land and ocean surface from AVHRR imagery. We developed a 6step threshold method to detect the cloud-contaminated pixels from NOAA-14/AVHRR datime imagery over land using different combination of channels. This algorithm has two phases : the first is to make a cloud-free characteristic data of land surface using compositing techniques from channel 1 and 5 imagery and a dynamic threshold of brightness temperature, and the second is to identify the each pixel as a cloud-free or cloudy one through 4-step threshold tests. The merits of this method are its simplicity in input data and automation in determining threshold values. The threshold of infrared data is calculated through the combination of brightness temperature of land surface obtained from AVHRR imagery, spatial variance of them and temporal variance of observed land surface temperature. The method detected the could-comtaminated pixels successfully embedded inthe NOAA-14/AVHRR daytime imagery for the August 1 to November 30, 1996 and March 1 to July 30, 1997. This method was evaluated through the comparison with ground-based cloud observations and with the enhanced visible and infrared imagery.