• 제목/요약/키워드: Sensing layer

검색결과 486건 처리시간 0.026초

인지 무선 네트워크에서 시스템 비용함수를 이용한 적응적 센싱주기 (Sensing Period Adaptation using the Cost Function in the Cognitive Radio Networks)

  • 고상;박형근
    • 전기학회논문지
    • /
    • 제61권2호
    • /
    • pp.321-323
    • /
    • 2012
  • Cognitive radio has been recently proposed to dynamically access unused-spectrum. Since the spectrum availability for opportunistic access is determined by spectrum sensing, sensing is identified as one of the most crucial issues of cognitive radio networks. The PHY-layer sensing, as a part of spectrum sensing in cognitive radio, concerns the sensing mechanism to determine channel to be sensed and to access. One of the important issues in the PHY-layer sensing control is to find an available sensing period and trade-off between spectrum sensing and data transmission. In this paper, we show the relationship between spectrum sensing and data transmission according to the sensing period. We analyze and propose the new scheme to evaluate optimal sensing period.

Glucose Diffusion Limiting Membrane Based on Polyethyleneimine (PEI) Hydrogel for the Stabilization of Glucose Sensor

  • Kim, Suk-Joon;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권2호
    • /
    • pp.225-229
    • /
    • 2021
  • Commercially available continuous glucose sensors require the operation stability for more than two weeks. Typically, the sensor comprises a sensing layer and an over-coating layer for the stable operation inside the body. In the sensing layer, enzymes and mediators are cross-linked together for the effective sensing of the glucose. The over-coating layer limits the flux of glucose and works as a biocompatible layer to the body fluids. Here, we report the simple preparation of the flux-limiting layer by the condensation of polyethyleneimine (PEI), tri-epoxide linker, and trimethylolpropane triglycidyl ether (PTGE). The sensor is constructed by a layer-by-layer drop-coating of the sensing layer containing glucose dehydrogenase and the PEI-derived blocking layer. It is stable for more than 14 days, which is enough for the sensor in the continuous monitor glucose monitoring (CGM) system.

Compressed Sensing-Based Multi-Layer Data Communication in Smart Grid Systems

  • Islam, Md. Tahidul;Koo, Insoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권9호
    • /
    • pp.2213-2231
    • /
    • 2013
  • Compressed sensing is a novel technology used in the field of wireless communication and sensor networks for channel estimation, signal detection, data gathering, network monitoring, and other applications. It plays a significant role in highly secure, real-time, well organized, and cost-effective data communication in smart-grid (SG) systems, which consist of multi-tier network standards that make it challenging to synchronize in power management communication. In this paper, we present a multi-layer communication model for SG systems and propose compressed-sensing based data transmission at every layer of the SG system to improve data transmission performance. Our approach is to utilize the compressed-sensing procedure at every layer in a controlled manner. Simulation results demonstrate that the proposed monitoring devices need less transmission power than conventional systems. Additionally, secure, reliable, and real-time data transmission is possible with the compressed-sensing technique.

공간 스케일러블 Kronecker 정지영상 압축 센싱 (Spatially Scalable Kronecker Compressive Sensing of Still Images)

  • ;전병우
    • 전자공학회논문지
    • /
    • 제52권10호
    • /
    • pp.118-128
    • /
    • 2015
  • 압축센싱 기술이 직면하고 있는 두 가지의 도전과제는 복원 알고리즘의 연산 복잡도 개선과 부호화 효율 향상 문제이다. 이에 대한 해결방안으로, 본 논문은 최대 3 가지의 공간 해상도 조절 및 향상된 압축센싱 부호화 성능을 가능하게 하는 공간 스케일러블 Kronecker 압축센싱 구조를 제안한다. 제안 방법의 기저 계층(base layer)에서는 quincunx 샘플링 격자에 기반 하는 듀얼-해상도 센싱 행렬을 사용한다. 해당 센싱 행렬은 낮은 해상도의 영상에 대한 고속-프리뷰(preview) 기능을 가능케 한다. 향상 계층(enhancement layer)에서는 획득한 측정값과 예측 측정값 간의 잔차 측정값을 부호화 한다. 복원과정에서는 기저 계층으로부터 낮은 해상도의 복원 영상을 획득 할 수 있는 반면, 두 개의 계층을 모두 사용하여 복원하는 경우 높은 해상도의 영상을 획득할 수 있다. 실험 결과, 제안하는 구조가 종래의 단일 계층방법 및 다중-해상도 기반 구조에 비해, 2.0bpp일 때 PSNR 성능이 각각 5.75dB 및 5.05dB 더 향상됨을 확인하였다.

용존산소농도와 pH의 동시 검출용 이중층 광학 센서막의 특성 및 발효공정의 온라인 모니터링에의 응용 (Characterization of Double-layer Optical Sensing Membranes for Dual Sensing of Dissolved Oxygen Concentrations and pH and Their Application to the On-line Monitoring of Fermentation Processes)

  • 김춘광;이종일
    • 공업화학
    • /
    • 제20권4호
    • /
    • pp.370-374
    • /
    • 2009
  • 용존산소농도(DO)와 pH를 동시에 검출하기 위하여 이중층 광학 센서 막을 제조하였다. DO 민감성 염료인 Rudpp를 MTMS 졸-겔에 혼합하고 24-웰 마이크로타이터 플레이트에 코팅하였다. DO-검출층 위에 HPTS와 혼합된 GA 졸-겔용액을 코팅하고 pH 측정을 위해 사용하였다. 이중층 광학 센서 막은 온도와 이온 강도에 영향을 받았다. 또한 DO와 pH 이중층 광학 센서 막은 미생물발효공정에 온라인 모니터링 하는데 응용하였으며 좋은 성능을 보였다.

H2S Micro Gas Sensor Based on a SnO2-CuO Multi-layer Thin Film

  • Kim, Sung-Eun;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권1호
    • /
    • pp.27-30
    • /
    • 2012
  • This paper proposes a micro gas sensor for measuring $H_2S$ gas. This is based on a $SnO_2$-CuO multi-layer thin film. The sensor has a silicon diaphragm, micro heater, and sensing layers. The micro heater is embedded in the sensing layer in order to increase the temperature to an operating temperature. The $SnO_2$-CuO multi layer film is prepared by the alternating deposition method and thermal oxidation which uses an electron beam evaporator and a thermal furnace. To determine the effect of the number of layers, five sets of films are prepared, each with different number of layers. The sensitivities are measured by applying $H_2S$ gas. It has a concentration of 1 ppm at an operating temperature of $270^{\circ}C$. At the same total thickness, the sensitivity of the sensor with multi sensing layers was improved, compared to the sensor with one sensing layer. The sensitivity of the sensor with five layers to 1 ppm of $H_2S$ gas is approximately 68%. This is approximately 12% more than that of a sensor with one-layer.

부가층의 두께 차이를 이용한 표면플라즈몬공명 멀티센싱 (Surface Plasmon Resonance Multisensing Using Thickness Difference of Additional Layer)

  • 김영규;오명환;이승기
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권10호
    • /
    • pp.492-498
    • /
    • 2006
  • A novel surface plasmon resonance(SPR) multisensing method, which does not require imaging apparatus such as CCD, has been proposed and implemented experimentally. The proposed method is based on the multichannel SPR and the separation of signals by use of additional layers whose thickness is controlled. SPR signals are influenced by the thickness of sensing layer as well as the optical condition of sensing surface. As the SPR signals from different ligands are usually positioned closely, the reflected light from sensing surface does not provide us with the clear differences of resonance signal depending on the kinds of ligands. It was found from our experiments that SPR signals from each ligand that is located on the additional layer with different thickness can be separated clearly enough to identify various signals from different ligands. Proposed method with theoretical design and simulation has been verified experimentally by using $SiO_2$ thin film layer as additional layer.

준복잡지형 대기경계층 저층 풍속분포 특성분석 - 포항가속기 라이다 원격탐사 캠페인을 중심으로 (Analysis on Wind Profile Characteristics in a Sublayer of Atmospheric Boundary Layer over a Semi-Complex Terrain - LIDAR Remote Sensing Campaign at Pohang Accelerator Laboratory)

  • 김현구
    • 한국환경과학회지
    • /
    • 제21권2호
    • /
    • pp.145-152
    • /
    • 2012
  • The mean wind speed and turbulence intensity profiles in the atmospheric boundary layer were extracted from a LIDAR remote sensing campaign in order to apply for CFD validation. After considering the semi-steady state field data requirements to be used for CFD validation, a neutral atmosphere campaign period, in which the main wind direction and the power-law exponent of the wind profile were constantly maintained, was chosen. The campaign site at the Pohang Accelerator Laboratory, surrounded by 40~50m high hills, with an apartment district spread beyond the hills, is to be classified as a semi-complex terrain. Nevertheless, wind speed profiles measured up to 100m above the ground fitted well into a theoretical-experimental logarithmic-law equation. The LIDAR remote-sensing data of the sub-layer of the atmospheric boundary layer has been proven to be superior to the data obtained by conventional extrapolation of the wind profile with 2 or 3 anemometer measurements.

High-sensitivity NIR Sensing with Stacked Photodiode Architecture

  • Hyunjoon Sung;Yunkyung Kim
    • Current Optics and Photonics
    • /
    • 제7권2호
    • /
    • pp.200-206
    • /
    • 2023
  • Near-infrared (NIR) sensing technology using CMOS image sensors is used in many applications, including automobiles, biological inspection, surveillance, and mobile devices. An intuitive way to improve NIR sensitivity is to thicken the light absorption layer (silicon). However, thickened silicon lacks NIR sensitivity and has other disadvantages, such as diminished optical performance (e.g. crosstalk) and difficulty in processing. In this paper, a pixel structure for NIR sensing using a stacked CMOS image sensor is introduced. There are two photodetection layers, a conventional layer and a bottom photodiode, in the stacked CMOS image sensor. The bottom photodiode is used as the NIR absorption layer. Therefore, the suggested pixel structure does not change the thickness of the conventional photodiode. To verify the suggested pixel structure, sensitivity was simulated using an optical simulator. As a result, the sensitivity was improved by a maximum of 130% and 160% at wavelengths of 850 nm and 940 nm, respectively, with a pixel size of 1.2 ㎛. Therefore, the proposed pixel structure is useful for NIR sensing without thickening the silicon.

NO2 Sensing Characteristics of Si MOSFET Gas Sensor Based on Thickness of WO3 Sensing Layer

  • Jeong, Yujeong;Hong, Seongbin;Jung, Gyuweon;Jang, Dongkyu;Shin, Wonjun;Park, Jinwoo;Han, Seung-Ik;Seo, Hyungtak;Lee, Jong-Ho
    • 센서학회지
    • /
    • 제29권1호
    • /
    • pp.14-18
    • /
    • 2020
  • This study investigates the nitrogen dioxide (NO2) sensing characteristics of an Si MOSFET gas sensor with a tungsten trioxide (WO3) sensing layer deposited using the sputtering method. The Si MOSFET gas sensor consists of a horizontal floating gate (FG) interdigitated with a control gate (CG). The WO3 sensing layer is deposited on the interdigitated CG-FG of a field effect transistor(FET)-type gas sensor platform. The sensing layer is deposited with different thicknesses of the film ranging from 100 nm to 1 ㎛ by changing the deposition times during the sputtering process. The sensing characteristics of the fabricated gas sensor are measured at different NO2 concentrations and operating temperatures. The response of the gas sensor increases as the NO2 concentration and operating temperature increase. However, the gas sensor has an optimal performance at 180℃ considering both response and recovery speed. The response of the gas sensor increases significantly from 24% to 138% as the thickness of the sensing layer increases from 100 nm to 1 ㎛. The sputtered WO3 film consists of a dense part and a porous part. As reported in previous work, the area of the porous part of the film increases as the thickness of the film increases. This increased porous part promotes the reaction of the sensing layer with the NO2 gas. Consequently, the response of the gas sensor increases as the thickness of the sputtered WO3 film increases.