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공간 스 일러블 Kronecker 정지 상 압축 센싱

( Spatially Scalable Kronecker Compressive Sensing of Still Images )
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,  병 우
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요  약

압축센싱 기술이 직면하고 있는 두 가지의 도 과제는 복원 알고리즘의 연산 복잡도 개선과 부호화 효율 향상 문제이다. 이에 

한 해결방안으로, 본 논문은 최  3 가지의 공간 해상도 조   향상된 압축센싱 부호화 성능을 가능하게 하는 공간 스

일러블 Kronecker 압축센싱 구조를 제안한다. 제안 방법의 기  계층(base layer)에서는 quincunx 샘 링 격자에 기반 하는 듀얼

-해상도 센싱 행렬을 사용한다. 해당 센싱 행렬은 낮은 해상도의 상에 한 고속- 리뷰(preview) 기능을 가능  한다. 향상 

계층(enhancement layer)에서는 획득한 측정값과 측 측정값 간의 잔차 측정값을 부호화 한다. 복원과정에서는 기  계층으로 

부터 낮은 해상도의 복원 상을 획득 할 수 있는 반면, 두 개의 계층을 모두 사용하여 복원하는 경우 높은 해상도의 상을 

획득할 수 있다. 실험 결과, 제안하는 구조가 종래의 단일 계층방법  다 -해상도 기반 구조에 비해, 2.0bpp일 때 PSNR 성

능이 각각 5.75dB  5.05dB 더 향상됨을 확인하 다.

Abstract

Compressive sensing (CS) has to face with two challenges of computational complexity reconstruction and low coding 

efficiency. As a solution, this paper presents a novel spatially scalable Kronecker two layer compressive sensing 

framework which facilitates reconstruction up to three spatial resolutions as well as much improved CS coding 

performance. We propose a dual-resolution sensing matrix based on the quincunx sampling grid which is applied to the 

base layer. This sensing matrix can provide a fast-preview of low resolution image at encoder side which is utilized for 

predictive coding. The enhancement layer is encoded as the residual measurement between the acquired measurement and 

predicted measurement data. The low resolution reconstruction is obtained from the base layer only while the high 

resolution image is jointly reconstructed using both two layers. Experimental results validate that the proposed scheme 

outperforms both conventional single layer and previous multi-resolution schemes especially at high bitrate like 2.0 bpp by 

5.75dB and 5.05dB PSNR gain on average, respectively.
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Ⅰ. Introduction

Compressive sensing (CS) which allows 

simultaneous sensing and compression[1∼2, 23∼24] has 

attracted significant interest due to its promising 

potential in wireless communication and image/video 

processing, etc. Relying on signal sparsity property, it 

can reconstruct sparse signals from much smaller 

number of measurements than Nyquist sampling 

theorem originally specifies. The CS measurement 

data formed into a column vector, ⊂


 of signal 

 ⊂


 is modeled as a linear projection     

where the sensing matrix  , which is typically a 

random matrix, needs to satisfy the restricted 

isometry property
[1,2]

. A fully random sensing matrix 

requires huge memory space for its storage and high 

computation complexity for the random projection and 

recovery especially for high dimensional signal. In 

this regard, the block-based CS (BCS)[3∼4] and the 

Kronecker CS (KCS)[5] have been introduced. In the 

view point of conventional frame-based sensing, the 

sensing matrix of BCS has only block diagonals, thus 

it loses global characteristics of the images despite 

preserving the local ones. The Kronecker CS senses 

measurement data still in frame-based fashion but in 

separate manner for each signal dimension. Its 

sensing complexity is considerably reduced by using 

a Kronecker product. For a 2D signal, ⊂× , the 

sensing matrix is given as ⊗  where ⊗  

denotes the Kronecker product,   and   respectively 

represent the sensing matrices for each dimension. 

The KCS measurement data formed into a matrix is 

rewritten as , and its vectorized version   

and measurement constraint are related as:

∥ ∥ ∥∥ (1)

where the notation ∥∥  denotes the Lp norm. 

One of the widely used CS reconstruction methods 

is the total variation (TV) technique[6∼8] which is 

known to achieve good CS recovery performance 

while preserving image edges relatively well by 

solving the problem below:

min








∥∇∥ ∥∇∥
 
∥∥











where   is a constant parameter and ∇∇   

stand for gradient operators respectively in horizontal 

and vertical direction. The problem can be efficiently 

solved by the split Bregman techniques
[5]
.

CS still faces challenges of huge computational 

complexity in reconstruction which hinders its 

practical usage, not to mention real-time application. 

Roughly speaking, its reconstruction complexity is 

directly proportional to the spatial resolution. The 

multi-resolution sensing matrix is one approach to 

alleviate this problem. By the way, CS at current 

status has much space to improve in coding 

efficiency when compared to conventional techniques 

such as JPEG or MPEG-4[7]. In addition to the coding 

efficiency, additional desirable practical feature is 

scalability functionality with which a transmitted 

bitstream can be selectively (or adaptively) decoded 

according to user's purpose or capability in picture 

(spatial and temporal) resolution, quality, resource 

status (energy, computation, etc), and so on. This 

scalable coding framework allows clients to have 

much freedom in decoding. In this paper, we are 

particularly interested in having the CS support 

spatial scalability. Under the spatially scalable 

framework, one can first have fast preview of low 

resolution for real-time application and later higher 

resolution as needed. The study in this paper 

proposes a novel spatially scalable KCS sensing with 

following contributions. Firstly, we introduce a 

quincunx sensing matrix which not only enables 

dual-resolution measurement but also improves final 

performance of CS. Secondly, we propose a novel 

two layer scalable framework: the low resolution base 

layer and the high resolution enhancement layer. The 

low-resolution image is obtained at encoder side and 
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utilized for predictive coding. Thirdly, we jointly 

reconstruct the high resolution image based on an 

up-sampled version of the base layer image utilizing 

post processing
[10]

.

The rest of this paper is organized as follows. 

Section II investigates some related work and 

Section III introduces our scalable framework with 

the proposed matrix. Numerical experiments are 

presented in Section IV, and the paper is concluded 

in Section V.

Ⅱ. Related Work

1. Multi-resolution sensing matrix

Recently the problem of multi-resolution CS has 

attracted high-level of attention. For example, 

Baraniuk et al. proposed a dual scale sensing matrix 

(DSS) in CS-MUVI framework
[11,12]

 which can 

generate an efficiently computable low-resolution 

video pre-view. To further reduce computational 

complexity, Goldstein et al.
[14]

 proposed a new 

multi-resolution framework based on the STOne 

transform. These algorithms were designed for a 

single pixel camera imaging system
[15]

 in which the 

elements of the sensing matrices are chosen as either 

+1 or -1 to achieve easier and faster implementation. 

Toward more general multiscale framework, the work 

[13] proposed a multi-resolution sensing matrix for 

Kronecker Compressive Sensing which focuses on 

sampling low frequency component. However, they 

only considered perfect measurement without 

quantization, which is not practical. 

2. Scalable compressive sensing of images

The problem of scalable compressive sensing has 

also drawn much attraction recently
[16∼18]

. For 

scalable videocast[16], Xiang et al. proposed to select a 

small portion of DCT coefficients in key frame 

measurement to enable predictive coding. The hybrid 

sensing matrix[19] they used does not support the so 

called, democracy property[20] of CS, so in terms of 

resilience to noise, it is slightly less attractive. By 

the way, Jiang et al.[17] used a multi-resolution 

sensing matrix between each group of the same 

resolution, so it can keep the democracy property 

satisfied. The multi-resolution sensing matrix is 

based on randomly permutated Walsh-Hadamard 

matrix and it can provide multi-resolution CS 

measurements under the scalable framework. 

However, it should be noted that no predictive coding 

was used. Utilizing a dual resolution sensing
[11]

, 

Valseia et al.[18] was able to obtain fast low 

resolution image and performed predictive coding at 

decoder. However, both algorithms
[17∼18]

 were 

designed for the single pixel camera system[11]. 

This paper develops a multi-resolution sensing 

matrix and a novel spatially scalable framework for 

Kronecker compressive sensing for still images. The 

proposed method is not limited to binary sensing 

matrix and also can take into account the 

quantization error.

III. Proposed Dual-Resolution Quincunx 

Matrix 

Even though the multi-resolution measurement is 

desirable for enabling a fast preview of an 

image/video, it however is supported neither by the 

conventional CS[11∼12, 14] nor by KCS[13]. In order to 

enable multi-resolution measurement, it is important 

to study the relationship between the HR (high 

resolution) and LR (low resolution) in measurement 

domain. The KCS measurements of a same image at 

low resolution,  ⊂



×



 and at a high resolution 

 ⊂
×  can be expressed as:

   (2)

        

Let's assume that the LR image is a bi-linearly 

down-sampled version of the HR image as follows: 
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그림 1. 제안하는 HR 행렬을 용 시 LR 측정값에 한 SNR 그래  (20개의 서로 다른 랜덤 행렬에 

한 평균 결과를 표시함; 256x256 해상도(왼쪽)  512x512 해상도(오른쪽)의 Lena 상 사용)

Fig. 1. SNR of LR measurement when the proposed HR matrix is applied to Lena image at resolution 

256x256 (left) and at 512x512 (right) (It shows average values over 20 different random matrices).

  


  





      
 
 

 

  
 

      




⊂  


× 

(3)

where the down-sampling operator is denoted by   

and simple up-sampling operator as a corresponding 

up-sampling operator 
 . Then a smoothed version 

of   can be delivered by:

 
  

 (4)

Let's further assume that the difference in (5) 

between these two images is very small.

 
    (5)

Since CS satisfies the Johnson-Lindenstrauss 

lemma (i.e., energy is preserved in the measurement 

domain)
[22]

, subsequently it can be safely assumed 

that the corresponding measurement residual in (6) is 

also very small.

    (6)

This assumption behind (5) is validated through 

experiment using various resolutions and subrates as 

shown in Fig. 1.  We achieve SNR value around 22.8 

dB and 25.5 dB for resolution 256x256 and 512x512, 

respectively. Note that it is SNR of the CS 

measurement not the one of the  reconstructed image. 

The SNR is calucualted as below:

  log



∥  ∥
∥∥ 



When the HR subrate equals to 0.25, the recovered 

LR image achieves very high PSNR value as in Fig 

2. It is because the subrate of LR image is exactly 1. 

그림 2. 측정율 0.25 에서 512x512 해상도의 HR 상에 

해 제안된 행렬을 사용하여 복원된 LR 상의 

PSNR 성능

Fig. 2. PSNR performance of recovered LR image 

using with the proposed matrix for HR image of 

size (512x512) at subrate 0.25.
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그림 3. KCS 측정에 한 측 분포도 (측정율 0.2  균일 양자화, Lena 상)

Fig. 3. Estimated distribution of KCS measurement (subrate 0.2 with uniform quantization, Lena image).

For lower subrate than 0.25, we also expected high 

PSNR performance for LR image since it is sensed at 

four times subrate than the HR one. In addition, it is 

worthwhile mentioning that our algorithm offers even 

better performance as the image resolution increases. 

Beside, the higher subrate gives the more stable SNR 

performance.

With this error, we can interpret the LR 

compressed measurement via   image as:

    
   

(7)

From (7), the LR measurement can be drawn from 

the HR measurement by enforcing the following 

constraint:

   (8)

      

To achieve this goal, we propose a new sensing 

matrix based on the quincunx sampling grid. After 

constructing a low resolution sensing matrix  , its 

values are then mapped to the high resolution 

sensing matrix   with the quincunx grid as 

illustrated in Fig. 4. By doing so, we actually sense 

LR image at quincunx grid with fully random 

sensing matrix  . Therefore, we guarantee the 

RIP condition of LR image. In another hand, the 

그림 4. 제안하는 quincunx 센싱행렬

Fig. 4. The proposed quincunx sensing matrix.

acquisition using the proposed matrix is equivalent to 

following two step sampling approach: (1) extract the 

LR image using the quincunx down-sampling pattern, 

(2) compress sensing this LR image using the 

random   matrix. Therefore, the RIP of HR 

sensing matrix is also guaranteed considering that 

we actually sense the HR image at quincunx sample 

locations. However, it is expected to lose some details 

of image. By using the proposed quincunx dual 

resolution sensing matrix to sense HR image, both 

LR and HR images can be reconstructed with the 

same set of measurements. Therefore, if the target 

subrate of HR image is , then we can construct the 

proposed sensing matrix   from the LR sensing 

matrix   at subrate × . As a result, the 

proposed sensing matrix   prefers a subrate 

smaller than 0.25, otherwise the subrate of LR will 

exceed 1. However, rather than discarding all high 

frequency components as in [13] (i.e., the authors 

actually sample the low resolution image only), the 

(1842)
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그림 5. 제안하는 공간 스 일러블 KCS 임웍 (  는 균일양자화  역양자화이며,   은 
Huffman 엔트로피 부호화  복호화를 의미)  

Fig. 5. Proposed spatially scalable KCS framework (here     refer to uniform quantizer and 

dequantizer;     refer to Huffman entropy coder and decoder, respectively).

proposed sensing matrix tends to preserve the image 

texture better. But, it comes with a cost of noise in 

low resolution image. Since the LR image is obtained 

at much higher subrate than HR image, we can 

easily get rid of LR measurement noise especially by 

utilizing the state of the art denoising algorithm like 

BM3D
[9]
.

 

Ⅳ. Proposed Spatially Scalable KCS

1. Compressed sensing and encoding

The detail of the proposed spatially scalable 

scheme is explained here by referring to Fig. 5. The 

sensing part senses an input image at two spatial 

resolutions: LR image for base layer and HR image 

for enhancement layer using respectively 

( ⊂ 
× 



) and ( ⊂ 
× ). The 

proposed framework, therefore, support three image 

resolutions: ×  and ×  with base 

layer and ×  with enhanced layer. In case of the 

base layer, we use the proposed quincunx sensing 

matrix at subrate 0.25 for LR image of size 

× . The enhanced layer is sensed at 

resolution nxn. The base layer is sensed at resolution 

n/2 x n/2. Therefore, the LR image that we can 

reconstruct from base layer is n/4 x n/4. This 

quincunx matrix is constructed from the lower 

resolution matrix 
   

 ⊂ 
× 



 at a subrate 

1.0. Therefore, we can enable fast preview the lower 

resolution image of size 

× 

 by a simple inverse 

processing:. 


   

 
  

 
(9)

where    is de-quantized measurement of the base 

layer. The recovered image is obtained at a high 

quality with very high SNR. For the enhancement 

layer, the HR image is sensed by the conventional 

KCS sensing matrix  ⊂ 
×  . 

Inspired by [10], we also up-sample the low 

resolution image 

  to predict the high resolution 

image 
Pr  and re-sample to deliver predictive 

measurement Pr  Pr   . Subsequently, 
we perform uniform quantization followed by 

Huffman entropy coding for measurement data of the 
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base layer    and the enhancement layer 

  Pr . 

From out experiment, we note that, the KCS 

measurement does not follow Gaussian distribution as 

conventional CS measurement as in [11] but 

Laplacian distribution. In addition, the KCS residual 

measurement follows Laplacian distribution. Fig. 3 

shows experimental results to see how well the 

Laplacian & Gaussian distributions fit with real data. 

It shows that KCS measurement and residual 

measurement match pretty well respectively with  

Laplacian and Gaussian distribution. Therefore, 

depending on the type KCS measurement, its 

corresponding distribution is selected for use in  

Huffman encoding process. The base layer is always 

available to decoder, while the additional bitstream of 

enhanced layer is sent only upon receiver request. 

2. Decoding and compressed sensing recovery

As an inverse processing to the compressed 

sensing, we first carry out the huffman decoding and 

dequantize the received bitstream for both the base 

and enhanced layers (if available). Decoder will 

reconstruct the LR image from the base layer then 

HR image as necessarily. Because HR and LR image 

sensing is designed to share the same measurements, 

reconstructing the HR and LR images can use the 

TV
[6]
 straightforwardly without modification. On the 

Input: Initial image   , measurement  , 
sensing matrices 
Output:  image 

 

Estimate image: 
    

While         
   

 


  

  

  



   

 

   
 

 

   
End

표 1. 후처리 알고리즘에 한 가상 코드
[10]

Table 1. Description of post processing algorithm
[10]
.

Algorithm Descriptions

SQ-TV-w/BM3D
Single layer by TV recovery 
with BM3D post processing

SQ-TV-w/oBM3D
Single layer by TV recovery 
without BM3D post 
processing

MR-KCS Multi-resolution sensing 
matrix

[13]

Proposed
Proposed spatially scalable 
KCS framework

표 2. 다양한 CS 복원방법

Table 2. Description of various CS methods.

other hand, in this paper, the LR image is 

reconstructed first from the measurements using the 

sensing matrices and the super resolution/upsampling  

technique, such as bi-cubic interpolation
[16]

. We utilize 

this upsampling technique to generate the predicted 

HR image from preview LR image.

Because both LR and HR images contain 

significant staircase artifacts, BM3D filtering as 

post-processing[10] is applied to alleviate this 

drawback. Due to the structure preservation of the 

state of the art denoising filter - BM3D, we can 

suppress the staircase artifact by iterative filtering of 

image and reconstructing the residual measurement. 

Details of the algorithm are in Table 1 where the 

BM3D(.) stands for a filtering operator with BM3D 

algorithm
[9]
, TVrec(Y, R, G.) denotes TV

[7]
 

reconstruction with input measurement Y and sensing 

matrix R, G. SSIM(.) represents the structural 

similarity SSIM
[15]

 metric which is used as the 

stopping criterion because the aim is to preserve the 

nonlocal structures. The two BM3D processes 

depicted in Fig. 5 are identical. 

Ⅴ. Experiment and Discussion

1. Experimental conditions

In this section we compare the proposed method 

with the conventional single layer framework[7] 

with/without BM3D post processing and the multi 

resolution sensing framework of MS-KCS
[13]

. For the 
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single layer and MR-KCS approaches, we follow the 

original framework with suggested parameters. In 

case of the proposed method, the base layer is sensed 

at subrate 0.25 with the proposed sensing matrix to 

deliver low resolution image at encoder side. 

Enhancement layer is sampled at various subrates 

using conventional KCS Gaussian sensing matrix. A 

simple bi-cubic interpolation method is used to 

deliver predicted HR images.  

For measurement coding, uniform quantization 

followed by Huffman coding is used for both spatial 

and residual KCS measurement with selected 

distribution as mentioned in Section |||. The best 

combination of quantization bit depth is selected to 

offer the best performance. For the proposed method, 

bit depth of 6 bits or 4 bits are used for base layer 

and residual/enhancement layer measurement, 

respectively.

In receiver side, TV reconstruction is used with 

the same parameters for all algorithms and stopping 

criteria of ∥    ∥∥ ∥   . For 
post processing, BM3D is used with     and 

SSIM threshold of 0.002.  All results are obtained by 

averaging five simulations with test images of size 

512×512 at various subrates to obtain bitrate from 0.6 

to 2.4 bbp. All test images are presented in Fig. 6.

그림 6. 512x512 해상도의 테스트 상

Fig. 6. Various gray test images of size 512x512.

2. Experimental results

In order to evaluate performance of the proposed 

quincunx sensing matrix, we compare its performance 

with that of the conventional KCS sensing matrix, 

and its result is given in Table 3. In comparison with 

the conventional sensing matrix, it is not only able to 

provide LR image reconstruction but also can 

improve HR reconstruction performance. An 

improvement of 0.3 to 1.3 dB can be achieved by 

using the proposed sensing matrix. Thanks to the 

quincunx sampling scheme, we are able not to lose 

any high frequency component and even have gain in 

case of images having much edgeness. For instance, 

the proposed matrix offers 0.3dB gain on average on 

Barbara image.

Two single layer framework SQ-TV with and 

without BM3D post processing and the previous dual 

resolution images MR-KCS[13] are compared with the 

proposed two layers scalable method as well. Their 

rate distortion performances are depicted in Fig. 7 in 

which we can observe that the BM3D post 

processing gives  almost 2dB gain on average over 

the conventional case. Surprisingly, the previous work 

MR-KCS does not show high performance as 

presented in the original paper
[13] 

most likely due to 

presence of quantization noise. It offers limited 

perofrmance at high subrate while slightly better 

performance than other frameworks at low bitrate

Image Subrate 0.05 0.10 0.15 0.20 0.25

Lena
TV[3] 25.58 28.19 29.84 31.16 32.26

TV[3]* 25.94 28.84 30.62 32.05 33.28

Barbara
TV[3] 21.06 22.39 23.23 23.94 24.67

TV[3]* 21.28 22.68 23.54 24.29 25.04

Peppers
TV[3] 25.31 28.24 29.85 30.97 31.86

TV[3]* 25.69 28.77 30.43 31.63 32.71

Camera
-man

TV[3] 25.40 28.58 30.79 32.47 33.91

TV[3]* 25.76 29.30 31.69 33.59 35.29

(*): using the proposed sensing matrix

표 3. 제안하는 quincunx  기존 KCS 행렬 간 TV 

복원 알고리즘
[3]
 에서의 성능 비교 (PSNR: dB)

Table 3. Experimental result comparison of TV
[3]
 

reconstruction with the proposed quincunx and 

the conventional KCS matrix (PSNR: dB).
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(a) Lena (b) Barbara 

(c) Cameraman (d) Peppers 

그림 7. 여러 테스트 상에 한 다양한 알고리즘 간 율-왜곡 그래

Fig. 7. Rate distortion curves of various algorithms for several test images.

below 0.8 bbp. At a high bit rate, MR-KCS's 

performance is even lower than the single layer with 

BM3D post processing. 

Thanks to the proposed two layer concept and 

proposed dual resolution sensing matrix, the proposed 

method, is not only able to produce different 

resolution reconstructions but also give the best 

performance among algorithms compared. It 

outperforms the single layer framework irrespective 

of with and without BM3D post processing (up to 8 

dB and 5 dB gain at bit rate of 2.33 bpp of Barbara 

image, respectively). In comparison with MR-KCS, it 

gains up to by 8.2 dB at 2.0 bpp for Barbara image. 

3. Further discussion

This paper is the first work addressing the 

scalable problem of Kronecker compressive sensing 

while the other existing ones are all about 

block-based CS or binary sensing matrix. So that we 

only compared with the previous works on 

multi-resolution sensing matrix and single layer 

scheme. Beside, it is possible to extend the proposed 

framework to other sensing matrix with only little 

modification on the base layer. We should change the 

quincunx sampling matrix suitable to the conventional 

sampling. Despite of the significant improvement of 

in coding efficiency, the two layered framework has 
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to face some limitation. We could sense different 

image resolutions with the same size sensing matrix 

(see [13]). However, it requires sampling two times 

for sensing two different resolutions of base and 

enhanced layer. Thus, the proposed framework 

prefers the static scene. This limitation can overcome 

for video application. For instance, we use base layer 

for key-frame only. 

Ⅵ. Conclusion

 In this paper, a dual resolution sensing matrix 

based on quincunx sampling grid and a spatially 

scalable Kronecker sensing framework (dual layer 

design) are proposed, The proposed method enables 

fast preview image and using predictive coding in the 

encoder side. HR image is recovered by jointly 

reconstructing HR and LR images, and further 

enhancement by BM3D post processing. This work 

does consider quantization error with uniform 

quantization. Our method also offers remarkable 

improvement over the conventional single layer and 

multi-resolution scheme in terms of coding efficiency.
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