• Title/Summary/Keyword: Sensing Performance

Search Result 2,002, Processing Time 0.028 seconds

High Resolution Cyclostationary Spectrum Sensing for ATSC Signal Detection (ATSC 신호 검출을 위한 고분해능 사이클로스테이션너리(Cyclostationary) 스펙트럼 센싱)

  • Yoo, Do-Sik;Lim, Jong-Tae;Kang, Min-Hong;Lim, Sun-Min
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.3
    • /
    • pp.378-384
    • /
    • 2009
  • In this paper, we consider a cyclostationary-feature-detection based spectrum sensing algorithm for ATSC signal detection. One of the proposed algorithms for IEEE 802.22 standardization organization which meet the requirements of IEEE 802.22 is Thomson's algorithm based on cyclostationary feature detection. We propose an interpolation-based spectrum sensing algorithm for ATSC signal detection, which has less computation complexity than that of Thomson's algorithm and provides no performance loss compared to Thomson's algorithm. By using zero-padding in time domain and effective sensing scanning method, the proposed algorithm requires less computational complexity and shows no performance degradation compared to Thomson's algorithm.

  • PDF

Particle Swarm Optimization based on Vector Gaussian Learning

  • Zhao, Jia;Lv, Li;Wang, Hui;Sun, Hui;Wu, Runxiu;Nie, Jugen;Xie, Zhifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2038-2057
    • /
    • 2017
  • Gaussian learning is a new technology in the computational intelligence area. However, this technology weakens the learning ability of a particle swarm and achieves a lack of diversity. Thus, this paper proposes a vector Gaussian learning strategy and presents an effective approach, named particle swarm optimization based on vector Gaussian learning. The experiments show that the algorithm is more close to the optimal solution and the better search efficiency after we use vector Gaussian learning strategy. The strategy adopts vector Gaussian learning to generate the Gaussian solution of a swarm's optimal location, increases the learning ability of the swarm's optimal location, and maintains the diversity of the swarm. The method divides the states into normal and premature states by analyzing the state threshold of the swarm. If the swarm is in the premature category, the algorithm adopts an inertia weight strategy that decreases linearly in addition to vector Gaussian learning; otherwise, it uses a fixed inertia weight strategy. Experiments are conducted on eight well-known benchmark functions to verify the performance of the new approach. The results demonstrate promising performance of the new method in terms of convergence velocity and precision, with an improved ability to escape from a local optimum.

Spectrum Sensing with Diversity Combining Technique in Cognitive Radio (인지 라디오 시스템에서 다이버시티 기법을 사용한 스펙트럼 검출)

  • Lee, So-Young;Kim, Eun-Cheol;Cha, Jae-Sang;Park, Yong-Woon;Hwang, Sung-Ho;Kim, Ki-Hong;Min, Joon-Ki;Kim, Seong-Kweon;Cho, Ju-Pill;Kim, Jin-Young;Kang, Jang-Mook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.179-185
    • /
    • 2009
  • Cognitive radio (CR), which is proposed as a technology that utilizes the frequency resources effectively, has studied to relive scarcity of the frequency resources. CR provides opportunistically unused frequency to the secondary user when the primary user is not detected. Spectrum sensing is the most important technology to detect primary user. However, in the wireless channels, according to the effect of multipath fading channel, spectrum sensing performance is compromised. Therefore, in this paper, we apply diversity scheme that is a useful technique for combating multiple fading in wireless communications. There are several classes of diversity scheme, which are time diversity, antenna diversity, muitipath diversity, frequency diversity, and so on. In this paper, we adopt antenna diversity that is a kind of space diversity. By using the proposed method, we can overcome fading effect and improve spectrum sensing performance.

  • PDF

Design of QAPM Modulation for Low Power Short Range Communication and Application of Compressive Sensing (저전력 근거리 통신을 위한 QAPM 변조의 설계와 압축 센싱의 적용)

  • Kim, So-Ra;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.797-804
    • /
    • 2012
  • In this paper, we propose a QAPM(Quadrature Amplitude Position Modulation) modulation using compressive sensing for the purpose of power efficiency improvement. QAPM modulation is a combination technique of QAM (quadrature amplitude modulation) and PPM(Pulse Position Modulation). Therefore it can decrease the transmission power and improve BER performance. Moreover, even if the band width is widened when the number of positions is increased, high sparsity characteristic caused by position number can be applied to compressive sensing technique. Compressive sensing has recently studied as a method that can be successfully reconstructed from the small number of measurements for sparse signal. Therefore, the proposed system can lower price of receiver by reducing sampling rate and has performance improved by using QAPM modulation. And the results are confirmed through simulations.

Recurrent Neural Network Based Spectrum Sensing Technique for Cognitive Radio Communications (인지 무선 통신을 위한 순환 신경망 기반 스펙트럼 센싱 기법)

  • Jung, Tae-Yun;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.759-767
    • /
    • 2020
  • This paper proposes a new Recurrent neural network (RNN) based spectrum sensing technique for cognitive radio communications. The proposed technique determines the existence of primary user's signal without any prior information of the primary users. The method performs high-speed sampling by considering the whole sensing bandwidth and then converts the signal into frequency spectrum via fast Fourier transform (FFT). This spectrum signal is cut in sensing channel bandwidth and entered into the RNN to determine the channel vacancy. The performance of the proposed technique is verified through computer simulations. According to the results, the proposed one is superior to more than 2 [dB] than the existing threshold-based technique and has similar performance to that of the existing Convolutional neural network (CNN) based method. In addition, experiments are carried out in indoor environments and the results show that the proposed technique performs more than 4 [dB] better than both the conventional threshold-based and the CNN based methods.

Design and Performance Evaluation on 2×2 Balanced-Bridge Mach-Zehnder Interferometric Integrated-Optical Biochemical Sensors using SOI Slot Optical Waveguides (SOI 슬롯 광 도파로를 활용한 2×2 Balanced-Bridge Mach-Zehnder 간섭형 집적광학 바이오케미컬 센서 설계 및 성능평가)

  • Hongsik Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.223-231
    • /
    • 2023
  • An integrated-optical biochemical sensor structure that can perform homogeneous and surface sensing using a 2×2 balanced-bridge Mach-Zehnder interference structure based on the optimized SOI slot optical waveguide was described, and its performance and characteristics were evaluated. Equations for the two output optical powers were derived and examined using the transfer matrices of a 3-dB coupler and phase shifter (channel waveguide). The length of the 3-dB coupler was determined such that the two output optical powers were same using these formulas. In homogeneous sensing, the effect of the refractive index of an analyte in the range of 1.33-1.36 on the two output optical power distributions was numerically derived, and the sensitivity was calculated based on each output and the difference between the two outputs, the former and the latter being 7.5796-19.0305 [au/RIU] and 15.2601-38.1351 [au/RIU], respectively. In the case of surface sensing, the sensitivity range of the refractive index of 1.337 based on each of the two outputs was calculated as -2.2490--3.5854 [au/RIU] and 1.2194-3.8012 [au/RIU], and the sensitivity range of 4.8048-7.0694 [au/RIU] was confirmed based on the difference between the two outputs.

Ocean Scanning Multi-spectral Imager (OSMI) Pre-Launch Radiometric Performance Analysis

  • Cho, Young-Min
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.390-395
    • /
    • 1999
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the Korean Multi-purpose SATellite (KOMPSAT) to perform worldwide ocean color monitoring for the study of biological oceanography KOMPSAT will be launched in the middle of November this year. The radiometric performance of OSMI is analyzed for various gain settings in the viewpoint of the instrument developer for OSMI calibration and application based on its ground performance measurement data for 8 primary spectral bands of OSMI. The radiometric response linearity and dynamic range are analyzed for the image radiometric calibration and the estimation of OSMI image quality for the ocean remote sensing area. The dynamic range is compared with the nominal input radiance for the ocean and the land. The noise equivalent radiance (NER) corresponding to the instrument radiometric noise is compared with the radiometric resolution of signal digitization (1-count equivalent radiance). The best gain setting of OSMI for ocean monitoring is recommended. This analysis is considered to be useful for the OSMI mission and operation planning, the OSMI image data calibration, and users' understanding about OSMI image quality.

  • PDF

Dual Diversity over Correlated Ricean Fading Channels

  • Bithas Petros S.;Sagias Nikos C.;Mathiopoulos P. Takis
    • Journal of Communications and Networks
    • /
    • v.9 no.1
    • /
    • pp.67-74
    • /
    • 2007
  • The performance of dual diversity receivers operating over correlated Ricean fading channels is analyzed. Using a previously derived rapidly converging infinite series representation for the bivariate Ricean probability density function, analytical expressions for the statistics of dual-branch selection combining, maximal-ratio combining, and equal-gain combining output signal-to-noise ratio (SNR) are derived. These expressions are employed to obtain novel analytical formulae for the average output SNR, amount of fading, average bit error probability, and outage probability. The proposed mathematical analysis is used to study various novel performance evaluation results with parameters of interest the fading severity, average input SNRs, and the correlation coefficient. The series convergence rate is also examined verifying the fast convergence of the analytical expressions. The accuracy of most of the theoretical performance evaluation results are validated by means of computer simulations.

Automatic Registration between EO and IR Images of KOMPSAT-3A Using Block-based Image Matching

  • Kang, Hyungseok
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.545-555
    • /
    • 2020
  • This paper focuses on automatic image registration between EO (Electro-Optical) and IR (InfraRed) satellite images with different spectral properties using block-based approach and simple preprocessing technique to enhance the performance of feature matching. If unpreprocessed EO and IR images from Kompsat-3A satellite were applied to local feature matching algorithms(Scale Invariant Feature Transform, Speed-Up Robust Feature, etc.), image registration algorithm generally failed because of few detected feature points or mismatched pairs despite of many detected feature points. In this paper, we proposed a new image registration method which improved the performance of feature matching with block-based registration process on 9-divided image and pre-processing technique based on adaptive histogram equalization. The proposed method showed better performance than without our proposed technique on visual inspection and I-RMSE. This study can be used for automatic image registration between various images acquired from different sensors.

High Performance Organic Phototransistors Based on Soluble Pentacene (용액형 유기반도체를 이용한 고성능 포토트랜지스터)

  • Kim, Y.H.;Lee, Y.U.;Han, J.I.;Han, S.M.;Han, M.K.
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.79-80
    • /
    • 2007
  • A high performance organic phototransistor with dynamic range of 120 dB is demonstrated by employing soluble pentacene as a photo-sensing layer. The organic phototransistor used suspended source/drain (SSD) electrode structure, which provides a dark current level of ${\sim}10^{-14}$ A at positive gate bias. Under a steady-state illumination, the organic phototransistor exhibited a current modulation of $10^6$ compared to dark to give a dynamic range of 120 dB. These results suggest that the organic phototransistor based on TIPS pentacene can be a new premising candidate for low-cost and high-performance photo-sensing element for digital imaging applications.

  • PDF