• Title/Summary/Keyword: Semi-infinite

Search Result 306, Processing Time 0.023 seconds

Propagation Characteristics of a Surface Crack on a Semi-Infinite Body Due to Frictional Heating (마찰열에 의한 반무한체 표면균열의 전파특성)

  • Park, Jun-Ho;Park, Eun-Ho;Kim, Chae-Ho;Kim, Seock-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3126-3134
    • /
    • 1996
  • In this paper, to examine the propagation of inclined surface crack due to frictional heating, analytic model is considered as the semi-infinite elastic body subjected to the thermo-mechanical loading of an asperity moving with a high speed. Considering the moving of frictional heat source and convection on a semi-infinite surface having inclined crack, theoretical analysis was carried out to estimate the propagation characteristics of thermo-mechanical crack. Numerical results showed that stress intensity factor $K_\prod/P_0\sqrt{c}$ is increasing with increasing velocity and frictional coefficient, inclined degree, decreasing crack length and the maximum value of it is positioned at the trailing edge. So it is shown that the propagation probability of surface crack is high at the trailing edge of contact area as increasing velocity and frictional coefficient, inclined degree, as decreasing crack length.

Development of Nomographs for the Evaluation of Lighting Energy Performance in a Semi-infinite Office Space (중규모 사무공간에서 조명에너지 성능평가를 위한 노모그래프 개발에 관한 연구)

  • Kim, Han-Seong;Ko, Dong-Hwan;Kim, Kang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.73-80
    • /
    • 2003
  • The purpose of this study was to analyze daylighting performance in a semi-infinite size office space for lighting energy conservation. DOE2.1E was used for simulations for the model space of $12\times12\times2.6m$. Nomographs were developed which could simulate work plane illuminance, glare index, energy consumption rate and energy reduction rate for daylighting design. Major results of simulations are as follows ; 1) When blinds facing south were installed, 43% of workplane illuminance diminished, but the flare index didn't exceed the recommended max-glare value. 2) In a semi-infinite office space facing south. energy consumption rate in the case space of 500 lux workplane illuminance is larger then case space of 300 lux workplane illuminance. Therefore, energy reduction rate is increased when the semi-infinite office faces south and naintains 300 lux workplane illuminance level.

Hydrodynamic forces on blocks and vertical wall on a step bottom

  • Mondal, Ramnarayan;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.485-497
    • /
    • 2020
  • A study, using potential water wave theory, is conducted on the oblique water wave motion over two fixed submerged rectangular blocks (breakwaters) placed over a finite step bottom. We have considered infinite and semi-infinite fluid domains. In both domains, the Fourier expansion method is employed to obtain the velocity potentials explicitly in terms of the infinite Fourier series. The unknown coefficients appearing in the velocity potentials are determined by the eigenfunction expansion matching method at the interfaces. The derived velocity potentials are used to compute the hydrodynamic horizontal and vertical forces acting on the submerged blocks for different values of block thickness, gap spacing between the two blocks, and submergence depth of the upper block from the mean free surface. In addition, the wave load on the vertical wall is computed in the case of the semi-infinite fluid domain for different values of blocks width and the incident wave angle. It is observed that the amplitudes of hydrodynamic forces are negligible for larger values of the wavenumber. Furthermore, the upper block experiences a higher hydrodynamic force than the lower block, regardless of the gap spacing, submergence depth, and block thickness.

Calculating of the Unrelaxed Surface Energy of Spinel Ferrites (스피넬 페라이트의 비이완 표면에너지 계산)

  • Shin, Hyung-Sup;Sohn, Jeongho
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.713-718
    • /
    • 2015
  • A new method is proposed for the calculation of the unrelaxed surface energy of spinel ferrite. The surface energy calculation consists of (1) setting the central and computational domains in the semi-infinite real lattice, having a specific surface, and having an infinite real lattice; (2) calculation of the lattice energies produced by the associated portion of each ion in the relative domain; and (3) dividing the difference between the semi-infinite lattice energy and the infinite lattice energy on the exposed surface area in the central domain. The surface energy was found to converge with a slight expansion of the domain in the real lattice. This method is superior to any other so far reported due to its simple concept and reduced computing burden. The unrelaxed surface energies of the (100), (110), and (111) of $ZnFe_2O_4$ and $Fe_3O_4$ were evaluated by using in the semi-infinite real lattices containing only one surface. For the normal spinel $ZnFe_2O_4$, the(100), which consisted of tetrahedral coordinated $Zn^{2+}$ was electrostatically the most stable surface. But, for the inverses pinel $Fe_3O_4$, the(111), which consisted of tetrahedral coordinated $Fe^{3+}$ and octahedral coordinated $Fe^{2+}$ was electrostatically the most stable surface.

Solution for a semi-infinite plate with radial crack and radial crack emanating from circular hole under bi-axial loading by body force method

  • Manjunath, B.S.;Ramakrishna, D.S.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.2
    • /
    • pp.177-187
    • /
    • 2009
  • Machine or structural members subjected to fatigue loading will have a crack initiated during early part of their life. Therefore analysis of members with cracks and other discontinuities is very important. Finite element method has enjoyed widespread use in engineering, but it is not convenient for crack problems as the region very close to crack tip is to be discretized with very fine mesh. However, as the body force method (BFM), requires only the boundary of the discontinuity (crack or hole) to be discretized it is easy versatile technique to analyze such problems. In the present work fundamental solution for concentrated load x + iy acting in the semi-infinite plate at an arbitrary point $z_0=x_0+iy_0$ is considered. These fundamental solutions are in complex form ${\phi}(z)$ and ${\psi}(z)$ (England 1971). These potentials are known as Melan potentials (Ramakrishna 1994). A crack in the semi-infinite plate as shown in Fig. 1 is considered. This crack is divided into number of divisions. By applying pair of body forces on a division, the resultant forces on the remaining 'N'divisions are to be found for which ${\phi}_1(z)$ and ${\psi}_1(z)$ are derived. Body force method is applied to calculate stress intensity factor for crack in semi-infinite plate. Also for the case of crack emanating from circular hole in semi-infinite plate radial stress, hoop stress and shear stress are calculated around the hole and crack. Convergent results are obtained by body force method. These results are compared with FEM results.

Dynamic Responses in Orthotropic Media Due to Pulsating Line Source

  • Kim, Yong-Yun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.1E
    • /
    • pp.70-75
    • /
    • 1998
  • The analysis of dynamic responses are carried out on several anisotropic systems due to buried pulsating line sources. These include infinite, semi-infinite spaces. The media possess orthotropic or higher symmetry. The load is in the from of a normal stress acting with parallel to symmetry axis on the plane of symmetry within the materials. The results are first derived for infinite media. Subsequently the results for semi-infinite are derived by using superposition of the solution in the infinite medium together with a scattered solution from the boundaries. The sum of both solutions has to satisfy stress free boundary conditions, thereby leading to the complete solutions. The solutions are simplified to the systems possessing of higher symmetry, such as orthotropic, transversely isotropic, cubic, and isotropic symmetry.

  • PDF

The Stress Field in the Body by Tangential Loading of a Rectangular Patch on a Semi-Infinite Solid (반 무한체 위의 사각조각 표면에 작용하는 접선하중에 의한 반 무한체내의 응력 해석)

  • Lee, Mun-Ju;Gu, Yeong-Pil;Jo, Yong-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.1032-1038
    • /
    • 2000
  • The stress field in the body by tangential loading of a rectangular patch on a semi-infinite solid has been solved analytically using potential function. The validity of result of this study was proved by Saint-Venant's principle in the remote region and in the vicinity of the surface with superposition of point loads.

The Effect of Two Circular Holes Arrangement on the Stress Concentration Factor in a Semi-infinite Plate (양무한평판의 두 원공비렬이 응력집중에 미치는 영향)

  • 오세욱;박영철;김준영
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.110-119
    • /
    • 1990
  • This study is concerned about the stress concentration factor measurement by photoelastic method, for the case of two circular holes arrangement in 3mm semi-infinite plate under tensile load, the ratio of those two circular holes diameter, the ratio of distance apart from circular holes to breadth and the two holes arrangement angle with loading direction were varied. Besides, the measured stress concentration by photoelastic method around one circular hole was compared with that by strain-gage method.

  • PDF

Electrostatic field of the semi-infinite electric dipole layer as (a) dual analogy to the Ampere's law (b) capacitor's fringing field (반무한 전기 쌍극자층에 의한 정전계 해석과 앙페르 법칙에 자계와 커패시터의 누설 전계간의 이중성 유사 관계)

  • Cho, Young-Ki;Ahmad, Sheikh Faisal;Son, Hyeok-Woo;Kim, Hyun-Deok;Yoo, Hyoung-Suk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.606-611
    • /
    • 2012
  • The similarity, analogy and equivalence between the phenomenon due to electric and magnetic dipoles have been discussed in the open literature for different situations. Here we are presenting the numerical proof of the trajectory of leakage electric field due to a semi-infinite electric dipole layer in the external periphery and the electric field in the space between oppositely charged surfaces. The result is also valid for the fringing electric field of a parallel plate capacitor. The result is also proved to be a dual of Amp$\grave{e}$re's law in the electrostatics due to a semi-infinite electric dipole layer.

CONTROLLABILITY OF SECOND ORDER SEMI-LINEAR NEUTRAL IMPULSIVE DIFFERENTIAL INCLUSIONS ON UNBOUNDED DOMAIN WITH INFINITE DELAY IN BANACH SPACES

  • Chalishajar, Dimplekumar N.;Acharya, Falguni S.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.813-838
    • /
    • 2011
  • In this paper, we prove sufficient conditions for controllability of second order semi-linear neutral impulsive differential inclusions on unbounded domain with infinite delay in Banach spaces using the theory of strongly continuous Cosine families. We shall rely on a fixed point theorem due to Ma for multi-valued maps. The controllability results in infinite dimensional space has been proved without compactness on the family of Cosine operators.