• Title/Summary/Keyword: Semantic retrieval

Search Result 398, Processing Time 0.029 seconds

A Method of Color KANSEI Information Extraction in Video Data (비디오 데이터에서의 컬러 감성 정보 추출 방법)

  • Choi, Jun-Ho;Hwangi, Myung-Gwon;Choi, Chang;Kim, Pan-Koo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.532-535
    • /
    • 2008
  • The requirement of Digital Culture Content(Movie, Music, Animation, Digital TV, Exhibition and etc.) is increasing so variety and quantity of content is also increasing. The Movie what majority of the digital Content is developing of technology and data. In the result, the efficient retrieval service has required and user want to use a recommendation engine and semantic retrieval methods through the recommendation system. Therefore, this paper will suggest analysing trait element of digital content data, building of retrieval technology, analysing and retrieval technology base on KANSEI vocabulary and etc. For the these, we made a extraction technology of trait element based on semantics and KANSEI processing algorithm based on color information.

  • PDF

Intelligent Information Search of Environmental Regulations through Metadata-based Information Structurization (메타데이터기반 정보구조화를 통한 지능형 친환경 법령정보 검색)

  • Woo, Sang-June;Oh, Minho;Kim, Han Soo;Lee, Jaewook
    • Journal of KIBIM
    • /
    • v.5 no.1
    • /
    • pp.8-15
    • /
    • 2015
  • With the emergence of environment-friendly paradigms, many countries around the world have enacted various laws to take care of environmental pollution-related problems. The goal of these environmental laws and regulations was to properly respond to rapid environmental pollution. Because of the simultaneous enactment of these laws on diverse pollution sources, however, a variety of problems, including an unclear correlation among these laws, have occurred. As a result, workers have found it hard to collect and use the related laws and regulations. Therefore, this study proposes a metadata-based information retrieval method for the efficient search of environment-friendly laws and regulations. The laws and regulations were structured using metadata from users, business stage, topic and department. These were obtained through semantic analysis on environment-friendly laws and regulations, and then an intelligent retrieval approach was utilized. To verify the retrieval plan, a test case was conducted, and improvement in retrieval accuracy against the conventional system was confirmed. It appears that the proposed plan will improve productivity in the construction industry by improving accuracy in retrieving environment-friendly laws and regulations.

Intelligne information retrieval using latent semantic analysis on the internet (인터넷에서 잠재적 의미 분석을 이용한 지능적 정보 검색)

  • 임재현;김영찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1782-1789
    • /
    • 1997
  • Most systems that retrieve distributed information on the Internet have difficulties in retrieving relevant information for they are not able to reflect exact semantics on retrieval queries that usersrequest. In this paepr, we propose an automatic query expansion based on ter distribution which reflects semantics of retrieval term to emhance the performance of information retrieval. We computed weight, indicating its overal imoritance in the collection documents and user's query and we use LSI's SVD technique to measure the term distribution which appears similar to query. And also, we measure the similarity to compared numerical value with query terms. Also we researched the method to reduce additional terms automatically and evaluated the performance of the proposed method.

  • PDF

Automatic In-Text Keyword Tagging based on Information Retrieval

  • Kim, Jin-Suk;Jin, Du-Seok;Kim, Kwang-Young;Choe, Ho-Seop
    • Journal of Information Processing Systems
    • /
    • v.5 no.3
    • /
    • pp.159-166
    • /
    • 2009
  • As shown in Wikipedia, tagging or cross-linking through major keywords in a document collection improves not only the readability of documents but also responsive and adaptive navigation among related documents. In recent years, the Semantic Web has increased the importance of social tagging as a key feature of the Web 2.0 and, as its crucial phenotype, Tag Cloud has emerged to the public. In this paper we provide an efficient method of automated in-text keyword tagging based on large-scale controlled term collection or keyword dictionary, where the computational complexity of O(mN) - if a pattern matching algorithm is used - can be reduced to O(mlogN) - if an Information Retrieval technique is adopted - while m is the length of target document and N is the total number of candidate terms to be tagged. The result shows that automatic in-text tagging with keywords filtered by Information Retrieval speeds up to about 6 $\sim$ 40 times compared with the fastest pattern matching algorithm.

Story-based Information Retrieval (스토리 기반의 정보 검색 연구)

  • You, Eun-Soon;Park, Seung-Bo
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.81-96
    • /
    • 2013
  • Video information retrieval has become a very important issue because of the explosive increase in video data from Web content development. Meanwhile, content-based video analysis using visual features has been the main source for video information retrieval and browsing. Content in video can be represented with content-based analysis techniques, which can extract various features from audio-visual data such as frames, shots, colors, texture, or shape. Moreover, similarity between videos can be measured through content-based analysis. However, a movie that is one of typical types of video data is organized by story as well as audio-visual data. This causes a semantic gap between significant information recognized by people and information resulting from content-based analysis, when content-based video analysis using only audio-visual data of low level is applied to information retrieval of movie. The reason for this semantic gap is that the story line for a movie is high level information, with relationships in the content that changes as the movie progresses. Information retrieval related to the story line of a movie cannot be executed by only content-based analysis techniques. A formal model is needed, which can determine relationships among movie contents, or track meaning changes, in order to accurately retrieve the story information. Recently, story-based video analysis techniques have emerged using a social network concept for story information retrieval. These approaches represent a story by using the relationships between characters in a movie, but these approaches have problems. First, they do not express dynamic changes in relationships between characters according to story development. Second, they miss profound information, such as emotions indicating the identities and psychological states of the characters. Emotion is essential to understanding a character's motivation, conflict, and resolution. Third, they do not take account of events and background that contribute to the story. As a result, this paper reviews the importance and weaknesses of previous video analysis methods ranging from content-based approaches to story analysis based on social network. Also, we suggest necessary elements, such as character, background, and events, based on narrative structures introduced in the literature. We extract characters' emotional words from the script of the movie Pretty Woman by using the hierarchical attribute of WordNet, which is an extensive English thesaurus. WordNet offers relationships between words (e.g., synonyms, hypernyms, hyponyms, antonyms). We present a method to visualize the emotional pattern of a character over time. Second, a character's inner nature must be predetermined in order to model a character arc that can depict the character's growth and development. To this end, we analyze the amount of the character's dialogue in the script and track the character's inner nature using social network concepts, such as in-degree (incoming links) and out-degree (outgoing links). Additionally, we propose a method that can track a character's inner nature by tracing indices such as degree, in-degree, and out-degree of the character network in a movie through its progression. Finally, the spatial background where characters meet and where events take place is an important element in the story. We take advantage of the movie script to extracting significant spatial background and suggest a scene map describing spatial arrangements and distances in the movie. Important places where main characters first meet or where they stay during long periods of time can be extracted through this scene map. In view of the aforementioned three elements (character, event, background), we extract a variety of information related to the story and evaluate the performance of the proposed method. We can track story information extracted over time and detect a change in the character's emotion or inner nature, spatial movement, and conflicts and resolutions in the story.

A Design of the Ontology for Enhanced Semantic Retrieval of Multimedia Contents (멀티미디어 콘텐츠의 강화된 의미 검색을 위한 온톨로지 설계)

  • Kim, Sun-Kyung;Shin, Pan-Seop;Lim, Hae-Chull
    • Journal of Internet Computing and Services
    • /
    • v.13 no.1
    • /
    • pp.107-115
    • /
    • 2012
  • In recent Information Environment, various Multimedia contents are getting noticed. But, since these contents have various formats of representation and very wide range of information, it was difficult to retrieve contents that user wanted and to utilize it. To solve these problems, many studies presented draft standards for adding metadata to contents, and then, semantic search for contents had become available. Unfortunately, as the number of metadata standards and contents increased, the lack of interoperability between contents was begun and users are faced with difficulty of search contents again. To improve these problems, this paper supports interoperability between metadata standards and expands the semantic relationship between elements and proposes an ontology which is named TOFIC(The Ontology For Imagery Contents) for enhanced semantic search. In TOFIC, the semantic relationships between MPEG-7 and TV-Anytime are classified, and extended new semantics are defined. As a result, semantic search for multimedia contents is enhanced and it is possible to retrieve most of the multimedia contents that exist on the current information environment consistently. In addition, it supports enhanced content-based search for multimedia contents.

Semantic Search System using Ontology-based Inference (온톨로지기반 추론을 이용한 시맨틱 검색 시스템)

  • Ha Sang-Bum;Park Yong-Tack
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.3
    • /
    • pp.202-214
    • /
    • 2005
  • The semantic web is the web paradigm that represents not general link of documents but semantics and relation of document. In addition it enables software agents to understand semantics of documents. We propose a semantic search based on inference with ontologies, which has the following characteristics. First, our search engine enables retrieval using explicit ontologies to reason though a search keyword is different from that of documents. Second, although the concept of two ontologies does not match exactly, can be found out similar results from a rule based translator and ontological reasoning. Third, our approach enables search engine to increase accuracy and precision by using explicit ontologies to reason about meanings of documents rather than guessing meanings of documents just by keyword. Fourth, domain ontology enables users to use more detailed queries based on ontology-based automated query generator that has search area and accuracy similar to NLP. Fifth, it enables agents to do automated search not only documents with keyword but also user-preferable information and knowledge from ontologies. It can perform search more accurately than current retrieval systems which use query to databases or keyword matching. We demonstrate our system, which use ontologies and inference based on explicit ontologies, can perform better than keyword matching approach .

User Adaptation Using User Model in Intelligent Image Retrieval System (지능형 화상 검색 시스템에서의 사용자 모델을 이용한 사용자 적응)

  • Kim, Yong-Hwan;Rhee, Phill-Kyu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.12
    • /
    • pp.3559-3568
    • /
    • 1999
  • The information overload with many information resources is an inevitable problem in modern electronic life. It is more difficult to search some information with user's information needs from an uncontrolled flood of many digital information resources, such as the internet which has been rapidly increased. So, many information retrieval systems have been researched and appeared. In text retrieval systems, they have met with user's information needs. While, in image retrieval systems, they have not properly dealt with user's information needs. In this paper, for resolving this problem, we proposed the intelligent user interface for image retrieval. It is based on HCOS(Human-Computer Symmetry) model which is a layed interaction model between a human and computer. Its' methodology is employed to reduce user's information overhead and semantic gap between user and systems. It is implemented with machine learning algorithms, decision tree and backpropagation neural network, for user adaptation capabilities of intelligent image retrieval system(IIRS).

  • PDF

A Case Study on the Types of Queries' Relations for Recognizing User intention (검색의도 파악을 위한 질의어 관계유형에 관한 사례연구)

  • Kwon, Soon-Jin;Kim, Won-Il;Yoo, Seong-Joon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.414-422
    • /
    • 2011
  • IR (Information Retrieval) systems have the methods that compare relationships between query and index to identify document that may be fit to the user's query keyword. However, the methods usually ignore the importance of relations that are not expressed in the query. Therefore, in this study, we describe how to refine the queries' relation from keyword and to reveal the hidden intent. A useful relationship between query and keyword in IR wth studied and we classified the tion fromrelation. Firstfromall, we did researchmrelated on semantic relationship and ontolhiical researchmin foreign and domestic research, and also analyzed semantic network practices, information retrieval technolhiy, extracted and classified the tion fromrelationships s' relasite's real-world datamin whichminformation retrieval technolhiin fare applied. Next, we souiht to solve the problems occurred frequently i' relasituation that searchers tioically face. I' relacurrent search technolhiy, the mesh searchmresult fare poured by simply comparn ina query with index terms. Therefore, the need for an intelligent search fittn inusers' intent is required. The relationships between two queries to re hiddee and identify relasearcher's intent have to be revealed. By analyzn inthe practical cthes s' queries and classifyn inthem into nine kind fromrelationship tion, we proposed the method to design relation revealn inand role namn i, and we have also illustrated limitations of that methods.

Elementary Educational Contents Retrieval System Using Semantic Web Technology (시맨틱 웹 기술을 활용한 초등학교 학습자료 검색 시스템)

  • Lee, Hee-Kyoung;Jun, Woo-Chun
    • 한국정보교육학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.622-630
    • /
    • 2004
  • 웹의 활용이 보편화되면서 웹을 통한 자료의 검색이 증가하고 있으나, 웹상의 방대한 자료 중에서 학습자가 꼭 필요한 학습자료를 찾는 것은 쉬운 일이 아니다. 검색엔진을 이용하면 원하는 정보를 어느 정도 찾을 수 있으나 사용자 의존적인 검색엔진의 특성상 결과가 만족스럽지 못한 경우도 있으며 연관이 없는 정보를 필터링하기 위해 최종적인 내용을 찾기까지 많은 시간을 낭비하는 경우가 많다. 이에 털 연구에서는 자원의 의미정보를 구조화하여 정보의 효율적인 검색, 통합, 재사용을 가능하도록 하는 시맨틱 웹 (Semantic Web)기술을 활용하여 초등학교 학습자료에 적합한 온톨로지 (Ontology)를 구축하여 이를 기반으로 초등학교 학습자료를 검색할 수 있는 시스템을 설계하고 구현하였다. 본 검색시스템의 특징은 다음과 같다. 첫째, 학습자료와 연관된 사용자 질의어를 보다 상세하게 입력받는다. 둘째, 사용자 질의어를 바탕으로 온톨로지에 질의하여 검색결과를 얻는다. 셋째, 검색하고자 하는 내용의 의미를 분석하여 요구된 의미에 적합한 자료만을 검색결과로 제시한다.

  • PDF