의미역 결정은 자연어 문장의 서술어와 그 서술어에 속하는 논항들 사이의 의미관계를 결정하는 문제이다. 일반적으로 의미역 결정을 위해서는 서술어 인식(Predicate Identification, PI), 서술어 분류(Predicate Classification, PC), 논항 인식(Argument Identification, AI) 논항 분류(Argument Classification, AC) 단계가 수행된다. 본 논문에서는 한국어 의미역 결정 문제를 위해 Korean Propbank를 의미역 결정 학습 말뭉치로 사용하고, 의미역 결정 문제를 Sequence Labeling 문제로 바꾸어 이 문제에서 좋은 성능을 보이는 Structural SVM을 이용하였다. 실험결과 서술어 인식/분류(Predicate Identification and Classification, PIC)에서는 97.13%(F1)의 성능을 보였고, 논항 인식/분류(Argument Identification and Classification, AIC)에서는 76.96%(F1)의 성능을 보였다.
의미 역 결정 (Semantic Role Labeling)은 문장의 각 요소들의 의미 관계를 파악하는 연구 분야로써 어휘 중의성 해소와 더불어 자연언어처리에서의 의미 분석에서 매우 중요한 위치를 차지하고 있다. 그러나 한국어의 경우에는 의미 역 결정에 필요한 언어 자원이 구축되지 못하여 연구의 진행이 매우 미진한 상황이다. 본 논문에서는 의미 역 결정에 필요한 언어 자원 중에서 가장 널리 사용되고 있는 PropBank의 한국어 버전의 구축을 위한 시작 단계로써 자동 술어-논항 분석기를 개발하였다. 자동 술어-논항 분석기는 크게 의미 어휘 사전과 자동 술어-논항 추출기로 구성된다. 의미 어휘 사전은 한국어 동사의 격틀 정보를 구축한 사전이며 자동 술어-논항 추출기는 구문 표지 부착된 말뭉치로부터 특정 술어와 관련있는 논항의 의미 부류를 결정하는 모듈이다. 본 논문에서 개발된 자동 술어-논항 분석기는 향후 한국어 PropBank의 구축을 용이하게 할 것이며, 궁극적으로는 한국어 의미 역 결정에 큰 역할을 할 것이다.
말뭉치를 이용하여 통계적으로 의미역 결정(semantic role labeling)을 하기 위해서는, 의미역을 태깅하는 작업이 필수적이다. 그러나 한국어의 경우 의미역이 태깅된 대량의 말뭉치를 구하기 힘들며, 이를 직접 구축하기 위해서는 많은 시간과 노력이 필요한 문제점이 있다. 본 논문에서는 비지도 학습의 하나인 self-training 알고리즘을 적용하여, 의미역이 태깅되지 않은 말뭉치로부터 의미역을 결정하는 방법을 제안한다. 이를 위해, 세종 용언 전자사전의 격틀 정보를 이용하여 자동으로 학습 말뭉치를 구축하였으며, 확률 모델을 적용하여 점진적으로 학습하였다. 그 결과, 4개의 부사격 조사에 대해 평균적으로 83.00%의 정확률을 보였다.
의미역 결정 연구에 있어 구문 분석 정보는 술어-논항 사이의 의존 관계를 포함하고 있기 때문에 의미역 결정 성능 향상에 큰 도움이 된다. 그러나 의미역 결정 이전에 구문 분석을 수행해야 하는 비용(overhead)이 발생하게 되고, 구문 분석 단계에서 발생하는 오류를 그대로 답습하는 단점이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 구문 분석 정보를 제외한 형태소 분석 정보만을 사용하는 End-to-end SRL 방식의 한국어 의미역 결정 시스템을 제안하고, 순차 데이터 모델링에 적합한 LSTM RNN을 확장한 Stacked Bidirectional LSTM-CRFs 모델을 적용해 구문 분석 정보 없이 기존 연구보다 더 높은 성능을 얻을 수 있음을 보인다.
Lim, Soojong;Lee, Changki;Ryu, Pum-Mo;Kim, Hyunki;Park, Sang Kyu;Ra, Dongyul
ETRI Journal
/
제36권3호
/
pp.429-438
/
2014
Semantic role labeling (SRL) is a task in natural-language processing with the aim of detecting predicates in the text, choosing their correct senses, identifying their associated arguments, and predicting the semantic roles of the arguments. Developing a high-performance SRL system for a domain requires manually annotated training data of large size in the same domain. However, such SRL training data of sufficient size is available only for a few domains. Constructing SRL training data for a new domain is very expensive. Therefore, domain adaptation in SRL can be regarded as an important problem. In this paper, we show that domain adaptation for SRL systems can achieve state-of-the-art performance when based on structural learning and exploiting a prior model approach. We provide experimental results with three different target domains showing that our method is effective even if training data of small size is available for the target domains. According to experimentations, our proposed method outperforms those of other research works by about 2% to 5% in F-score.
기계학습 기반의 의미역 인식에서 어휘, 구문 정보가 자질로 주로 쓰이지만, 의미 정보를 분석하는 의미역 인식은 의미 정보 또한 매우 유용한 정보이다. 그러나, 기존 연구에서는 의미 정보를 활용할 수 있는 방법이 제한되어 있기 때문에, 소수의 연구만 진행되었다. 본 논문에서는 의미 정보를 활용하는 방안으로 동형이의어 수준의 의미 애매성 해소 기술, 고유 명사에 대한 개체명 인식 기술, 의미 정보에 기반한 필터링, 유의어 사전을 이용한 클러스터 및 기존 의미 프레임 정보 확장, 구문-의미 정보 연동 규칙, 필수 의미역 오류 보정 등을 제안한다. 제안하는 방법은 기존 연구 대비 뉴스 도메인인 Korean Propbank는 3.77, 위키피디아 문서 기반의 Exobrain GS 3.0 평가셋에서는 8.05의 성능 향상을 보였다.
한국어 의미역 결정(Semantic Role Labeling)은 주로 기계학습에 의해 이루어지며 많은 말뭉치 자원을 필요로 한다. 그러나 한국어 의미역 결정 시스템에 사용되는 Korean PropBank는 의미역이 부착된 용언과 용언 격틀이 PropBank에 비해 각각 1/5, 1/2 수준에 불과하다. 따라서 본 논문에서는 한국어 의미역 결정 시스템을 위해 의미역이 부착된 용언과 용언 격틀을 확장하여 Korean PropBank를 확장 시키고자 한다. 대부분의 의미역 결정 시스템은 학습 도메인에 의존적이기 때문에 적용 도메인 변경에 따른 성능 하락이 나타날 수 있다. 본 논문에서는 기존의 학습 말뭉치와 적은 양의 새로운 학습 말뭉치를 활용하여 새로운 도메인에 대해 의미역 결정 시스템의 성능 하락을 최소화 할 수 있는 도메인 적응 기술을 Structural SVM(S-SVM)과 Deep Neural Network(DNN) 기반 한국어 의미역 결정 시스템에 적용하여 그 실효성을 알아보고자 한다.
의미역 결정 작업은 서술어와 문장 내 행위자, 피행위자, 장소, 시간 등 서술어와 관련 있는 논항들을 추출하는 작업이다. 기존 의미역 결정 방법은 문장의 언어학적 특징 추출을 위한 파이프라인을 구축하는데, 파이프라인 내 각 추출 작업들의 오류가 의미역 결정 작업의 성능에 영향을 미치기 때문에 현재는 End-to-End 방법의 신경망 모델을 이용한 방법들이 제안되고 있다. 본 논문에서는 의미역 결정 작업을 위해 Biaffine Average Attention 구조를 이용한 신경망 모델을 제안한다. 제안하는 모델은 기존 연구에서 제안된 특정 시점에 대한 레이블 예측을 위해 주변 시점 정보를 이용하는 LSTM 모델 대신 문장 내 서술어와 논항의 거리에 상관없이 문장 전체 정보에 집중할 수 있는 Biaffine Average Attention 구조로 이루어져 있다. 제안하는 모델의 성능 평가를 위해 F1 점수를 이용하여 기존 연구에서 제안한 BERT 기반의 모델들과 비교하였으며, 76.21%의 성능으로 비교 모델보다 높은 성능을 보였음을 확인하였다.
기계가 사람과 같이 문장을 처리하게 하려면 사람이 쓴 문장을 토대로 사람이 문장을 통해 발현하는 모든 문장의 표현 양상을 학습해 사람처럼 분석하고 처리할 수 있어야 한다. 이를 위해 기본적으로 처리되어야 할 부분은 언어학적인 정보처리이다. 언어학에서 통사론적으로 문장을 분석할 때 필요한 것이 문장을 성분별로 나눌 수 있고, 문장의 핵심인 용언을 중심으로 필수 논항을 찾아 해당 논항이 용언과 어떤 의미역 관계를 맺고 있는지를 파악할 수 있어야 한다. 본 연구에서는 국립국어원 표준국어대사전을 기반으로 구축한 격틀사전과 한국어 어휘 의미망에서 용언의 하위 범주를 자질로 구축한 CRF 모델을 적용하여 의미역을 결정하는 방법을 사용하였다. 문장의 어절, 용언, 격틀사전, 단어의 상위어 정보를 자질로 구축한 CRF 모델을 기반으로 하여 의미역을 자동으로 태깅하는 실험을 한 결과 정확률이 83.13%로 기존의 규칙 기반 방법을 사용한 의미역 태깅 결과의 정확률 81.2%보다 높은 성능을 보였다.
의미 역 결정은 한 문장에서 술어와 그것의 논항간의 의미 관계를 결정해주는 것을 말한다. 한편 한국어 의미 역 결정은 영어와는 다른 한국어 고유의 특이한 언어 구조 때문에 많은 어려움을 가지고 있는데, 이러한 어려움 때문에 지금까지 제안된 다양한 방법들을 곧바로 적용하기에 어려움이 있었다. 다시 말하자면, 지금까지 제안된 방법들은 영어나 중국어에 적용했을 때에 비해서 한국어에 적용하면 낮은 성능을 보여주었던 것이다. 이러한 어려움을 해결하기 위하여 본 연구에서는 조사나 어미와 같은 접사구조를 분석하는 것에 초점을 맞추었다. 한국어는 일본어와 같은 교착어의 하나인데, 이들 교착어에서는 매우 잘 정리되어 있는 접사구조가 어휘에 반영되어 있다. 교착어는 바로 이들 잘 정의된 접사 구조 때문에 매우 자유로운 어순이 가능하다. 또한 본 연구에서는 단일 형태소로 이루어진 논항은 기초 통계량을 기준으로 의미 역 결정을 하였다. 또한 지지 벡터 기계(Support Vector Machine: SVM)과 조건부 무작위장(Conditional Random Fields: CRFs)와 갗은 기계 학습 알고리즘을 사용하여 앞에서 결정되지 못한 논항들의 의미 역을 결정하였다. 본 논문에서 제시된 방법은 기계 학습 접근 방식이 처리해야 하는 논항의 범위를 줄여주는 역할을 하는데, 이는 기계 학습 접근은 상대적으로 불확실하고 부정확한 의미 역 결정을 하기 때문이다. 실험에서는 본 연구는 15,224 논항을 사용하였는데, 약 83.24%의 f1 점수를 얻을 수 있었는데, 이는 한국어 의미 역 결정 연구에 있어서 해외에서 발표된 연구 중 가장 높은 성능으로 알려진 것에 비해 약 4.85%의 향상을 보여준 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.