• 제목/요약/키워드: Semantic Role

검색결과 250건 처리시간 0.027초

무기체계 부품국산화 정보의 온톨로지 구축방안 연구 (A Study on Ontology Modeling for Weapon Parts Development Information)

  • 장우혁
    • 한국멀티미디어학회논문지
    • /
    • 제18권7호
    • /
    • pp.873-885
    • /
    • 2015
  • Today, It is difficult to search the various and numerous information efficiently. For this reason, Semantic Web emerged to provide searching services more easily through the structuring of a variety of unstructured format data and the definition of meaningful relationships between information. Especially, definition of relationship and meaning among resources is significant to share and infer related information. Ontology modeling plays just that role. Weapon parts development information is unstructured and dispersed all over. There are many difficulties in finding desired information, leading to getting improper outcomes. In this paper, we present an intuitive ontology model with weapon parts development information including the multi-dimensional information analysis and expansion of the relevant information. This study build up a ontology model through creating class and hierarchy about parts information and defining the properties of classes with Ontology Development 101[1] procedures using Protégé tools. The ontology model provides users with a platform on which search of needed information can be easy and efficient.

Language Modeling Approaches to Information Retrieval

  • Banerjee, Protima;Han, Hyo-Il
    • Journal of Computing Science and Engineering
    • /
    • 제3권3호
    • /
    • pp.143-164
    • /
    • 2009
  • This article surveys recent research in the area of language modeling (sometimes called statistical language modeling) approaches to information retrieval. Language modeling is a formal probabilistic retrieval framework with roots in speech recognition and natural language processing. The underlying assumption of language modeling is that human language generation is a random process; the goal is to model that process via a generative statistical model. In this article, we discuss current research in the application of language modeling to information retrieval, the role of semantics in the language modeling framework, cluster-based language models, use of language modeling for XML retrieval and future trends.

Numerals and Pragmatic Interpretations

  • Yeom, Jae-Il
    • 한국언어정보학회지:언어와정보
    • /
    • 제10권2호
    • /
    • pp.47-65
    • /
    • 2006
  • In this paper I address the problems of defining the semantics of numerals and accounting for how pragmatic inferences are made. I basically assume that a numeral n simply means '${\lambda}P{\lambda}x[#(x)n\;&\;P(x)]$', as commonly assumed. Even when a numeral n has 'at least' interpretation, a sentence with the number does not entail a sentence with n replaced with n-1. But when a sentence with n-1 holds, it is possible that a sentence with n or a larger number holds too. This is not based on a semantic relation, but on pragmatic informativeness. In addition to pragmatic strength, the actual reading of a numeral is affected by some background knowledge of generalizations about the world, but the ordering of pragmatic strength among numbers always plays a role in determining unilateral interpretations. In such a case, we can assume that a set of numbers relevant in the context forms a scale. Forming a scale does not necessarily lead to a unilateral interpretation. The bilateral interpretation of a number is possible in the context where it is known whether or not alternative sentences with contextually salient alternative numbers are true.

  • PDF

CRF를 이용한 복수 의미역 문제 해결 (Multiple Semantic Role Labeling Problems Solving using CRFs)

  • 박태호;차정원
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.276-279
    • /
    • 2016
  • 의미역 결정에서 하나의 의미 논항이 둘 이상의 의미역을 가지는 경우는 복수의 레이블을 할당하기 때문에 어려운 문제이다. 본 논문은 복수의 의미역을 가지는 항의 의미역 결정을 위한 새로운 자질을 제안한다. 복수의 의미역을 결정하기 위해서 체언보다 선행되어 나타나는 용언에 대한 자질을 추가하였다. 또한 문장의 용언에 따라 의미역을 결정하기 위해서 문장 내의 용언 수만큼 각각에 용언에 대한 의미역을 결정할 수 있도록 반복적으로 레이블링하는 방법을 제시하였다. 본 논문의 실험 결과로 제안한 방법은 74.90%의 성능(F1)을 보였다.

  • PDF

Input-feeding RNN Search 모델과 CopyNet을 이용한 한국어 의미역 결정 (Korean Semantic Role Labeling using Input-feeding RNN Search Model with CopyNet)

  • 배장성;이창기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.300-304
    • /
    • 2016
  • 본 논문에서는 한국어 의미역 결정을 순차열 분류 문제(Sequence Labeling Problem)가 아닌 순차열 변환 문제(Sequence-to-Sequence Learning)로 접근하였고, 구문 분석 단계와 자질 설계가 필요 없는 End-to-end 방식으로 연구를 진행하였다. 음절 단위의 RNN Search 모델을 사용하여 음절 단위로 입력된 문장을 의미역이 달린 어절들로 변환하였다. 또한 순차열 변환 문제의 성능을 높이기 위해 연구된 인풋-피딩(Input-feeding) 기술과 카피넷(CopyNet) 기술을 한국어 의미역 결정에 적용하였다. 실험 결과, Korean PropBank 데이터에서 79.42%의 레이블 단위 f1-score, 71.58%의 어절 단위 f1-score를 보였다.

  • PDF

의미역 태깅의 제문제 (Consideration of Semantic Role Tagging)

  • 김윤정;옥철영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.75-80
    • /
    • 2015
  • 본고는 기존 연구에서 상정한 의미역에 기반하여 의미역 태깅 작업 중 실제 문장에 의미역을 태깅하는 데 나타난 문제점들에 대해 재고해보았다. 의미역을 태깅하는 데에 격틀 사전을 이용한 반자동의미역태깅프로그램의 정상적인 구동을 위한 사전의 재정비와 실제 문장에서는 드러나지만 사전에서는 나타나지 않는 문형 정보를 상세히 검토해야 함을 알게 되었다. 이를 해결하기 위해 격틀사전의 기본 사전이 표준국어대사전의 통사정보 제시를 문제삼아 이를 해결하기 위한 방안을 모색하고, 실제 문장에서 격교체에 의해 나타나고 있는 논항정보교체에 대처하기 위한 방안을 마련하고자 한다.

  • PDF

Backward LSTM CRF를 이용한 한국어 의미역 결정 (Korean Semantic Role Labeling using Backward LSTM CRF)

  • 배장성;이창기;임수종
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.194-197
    • /
    • 2015
  • Long Short-term Memory Network(LSTM) 기반 Recurrent Neural Network(RNN)는 순차 데이터를 모델링 할 수 있는 딥 러닝 모델이다. 기존 RNN의 그래디언트 소멸 문제(vanishing gradient problem)를 해결한 LSTM RNN은 멀리 떨어져 있는 이전의 입력 정보를 볼 수 있다는 장점이 있어 음성 인식 및 필기체 인식 등의 분야에서 좋은 성능을 보이고 있다. 또한 LSTM RNN 모델에 의존성(전이 확률)을 추가한 LSTM CRF모델이 자연어처리의 한 분야인 개체명 인식에서 우수한 성능을 보이고 있다. 본 논문에서는 한국어 문장의 지배소가 문장 후위에 나타나는 점에 착안하여 Backward 방식의 LSTM CRF 모델을 제안하고 이를 한국어 의미역 결정에 적용하여 기존 연구보다 더 높은 성능을 얻을 수 있음을 보인다.

  • PDF

도메인 적응 기술 기반 질문 문장에 대한 의미역 인식 연구 (A Study of Semantic Role Labeling using Domain Adaptation Technique for Question)

  • 임수종;김현기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.246-249
    • /
    • 2015
  • 기계학습 방법에 기반한 자연어 분석은 학습 데이터가 필요하다. 학습 데이터가 구축된 소스 도메인이 아닌 다른 도메인에 적용할 경우 한국어 의미역 인식 기술은 10% 정도 성능 하락이 발생한다. 본 논문은 기존 도메인 적응 기술을 이용하여 도메인이 다르고, 문장의 형태도 다를 경우에 도메인 적응 알고리즘을 적용하여, 질의응답 시스템에서 필요한 질문 문장 의미역 인식을 위해, 소규모의 질문 문장에 대한 학습 데이터 구축만으로도 한국어 질문 문장에 대해 성능을 향상시키기 위한 방법을 제안한다. 한국어 의미역 인식 기술에 prior 모델을 제안한다. 제안하는 방법은 실험결과 소스 도메인 데이터만 사용한 실험보다 9.42, 소스와 타겟 도메인 데이터를 단순 합하여 학습한 경우보다 2.64의 성능향상을 보였다.

  • PDF

의미 정보를 이용한 한국어 의미역 인식 연구 (A Study of Korean Semantic Role Labeling using Word Sense)

  • 임수종;김현기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.18-22
    • /
    • 2015
  • 기계학습 기반의 의미역 인식에서 주로 어휘, 구문 정보가 자질로 주로 쓰이지만, 의미 정보를 분석하는 의미역 인식은 단어의 의미 정보 또한 매우 주요한 정보이다. 그러나, 기존 연구에서는 의미 정보를 활용할 수 있는 방법이 제한되어 있기 때문에, 소수의 연구만 진행되었다. 본 논문에서는 동형이의어 수준의 의미 애매성 해소 기술, 고유 명사에 대한 개체명 인식 기술, 의미 정보에 기반한 필터링, 유의어 사전을 이용한 클러스터 및 기존 프레임 정보를 확장하는 방법을 제안한다. 제안하는 방법은 기존 연구 대비 뉴스 도메인인 Korean Propbank는 3.14, 위키피디아 문서 기반의 WiseQA 평가셋인 GS 3.0에서는 6.57의 성능 향상을 보였다.

  • PDF

한국어 의미역 결정을 위한 자질 정보 확장 (Expansion of Feature Information for Korean Semantic Role Labeling)

  • 조병철;석미란;김유섭
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.184-186
    • /
    • 2015
  • 의미역 결정은 주어진 술어와 의존 관계에 있는 여러 논항들과 그 술어간의 의미 관계를 결정하는 것이다. 의미역 결정은 보통 대량의 말뭉치를 이용하여 분류의 관점에서 문제를 해결하고자 한다. 본 논문에서는 한국어 구문 표지 부착된 말뭉치에 구축한 의미역 표지 부착 말뭉치 10,000 문장을 이용한 자동 의미역 결정 방법을 제안한다. 특히, 한국어는 그 특성상 조사와 어미가 문법 관계뿐만 아니라 의미 관계 설정에도 매우 중요한 역할을 하기 때문에 기존의 의미역 결정 연구에서 미비했던 부분인 조사와 어미 정보를 개선하여 새로운 자질 (features) 로 설계하여 의미역 결정을 시도하였다. 기존의 다른 언어에서의 의미역 결정 연구에서 사용된 자질에 본 논문에서 제시된 접사 정보에 기반한 자질을 추가하게 되면 약 77.9%의 F1 점수를 얻을 수 있었는데, 이는 기존 연구에 비하여 약 10% 포인트 향상된 결과이다.

  • PDF