• 제목/요약/키워드: Semantic Dictionary

검색결과 126건 처리시간 0.022초

워드 임베딩과 유의어를 활용한 단어 의미 범주 할당 (Assignment Semantic Category of a Word using Word Embedding and Synonyms)

  • 박다솔;차정원
    • 정보과학회 논문지
    • /
    • 제44권9호
    • /
    • pp.946-953
    • /
    • 2017
  • 의미역 결정은 서술어와 논항들 사이의 의미 관계를 결정하는 문제이다. 의미역 결정을 위해 의미 논항 역할 정보와 의미 범주 정보를 사용해야 한다. 세종 전자사전은 의미역을 결정하는데 사용한 격틀 정보가 포함되어 있다. 본 논문에서는 워드 임베딩과 유의어를 활용하여 세종 전자사전을 확장하는 방법을 제시한다. 연관 단어가 유사한 벡터 표현을 갖도록 하기 위해 유의어 사전의 정보를 사용하여 재구성된 벡터를 생성한다. 기존의 워드 임베딩과 재구성된 벡터를 사용하여 동일한 실험을 진행한다. 워드 임베딩을 이용한 벡터로 단어의 세종 전자사전에 나타나지 않은 단어에 대해 의미 범주 할당의 시스템 성능은 32.19%이고, 확장한 의미 범주 할당의 시스템 성능은 51.14%이다. 재구성된 벡터를 이용한 단어의 세종 전자사전에 나타나지 않은 단어에 대해 의미 범주 할당의 시스템 성능은 33.33%이고, 확장한 의미 범주 할당의 시스템 성능은 53.88%이다. 의미 범주가 할당되지 않은 새로운 단어에 대해서 논문에서 제안한 방법으로 의미 범주를 할당하여 세종 전자사전의 의미 범주 단어 확장에 대해 도움이 됨을 증명하였다.

데이터사전을 이용한 ERP애플리케이션 개발 (ERP Application Development Using Business Data Dictionary)

  • Minsu Jang;Joo-Chan Sohn;Jong-Myoung Baik
    • 한국전자거래학회지
    • /
    • 제7권1호
    • /
    • pp.141-152
    • /
    • 2002
  • Data dictionary is a collection of meta-data, which describes data produced and consumed while performing business processes. Data dictionary is an essential element for business process standardization and automation, and has a fundamental role in ERP application management and customization. Also, data dictionary facilitates B2B processes by enabling painless integration of business processes between various enterprises. We implemented data dictionary support in SEA+, a component- based scalable ERP system developed in ETRI, and found out that it's a plausible feature of business information system. We discovered that data dictionary promotes semantic, not syntactic, data management, which can make it possible to leverage viability of the tool in the coming age of more meta-data oriented computing world. We envision that business data dictionary is a firm foundation of adapting business knowledge, applications and processes into the semantic web based enterprise infra-structure.

  • PDF

대용량 OWL 온톨로지 자동구축을 위한 세종전자사전 활용 방법론 연구 (A Study of Methodology for Automatic Construction of OWL Ontologies from Sejong Electronic Dictionary)

  • 송도규
    • 한국언어정보학회지:언어와정보
    • /
    • 제9권1호
    • /
    • pp.19-34
    • /
    • 2005
  • Ontology is an indispensable component in intelligent and semantic processing of knowledge and information, such as in semantic web. However, ontology construction requires vast amount of data collection and arduous efforts in processing these un-structured data. This study proposed a methodology to automatically construct and generate ontologies from Sejong Electronic Dictionary. As Sejong Electronic Dictionary is structured in XML format, it can be processed automatically by computer programmed tools into an OWL(Web Ontology Language)-based ontologies as specified in W3C . This paper presents the process and concrete application of this methodology.

  • PDF

자동요약의 주제어 추출을 위한 의미사전의 동적 확장 (Dynamic Expansion of Semantic Dictionary for Topic Extraction in Automatic Summarization)

  • 추교남;우요섭
    • 전기전자학회논문지
    • /
    • 제13권2호
    • /
    • pp.241-247
    • /
    • 2009
  • 본 논문에서는 자동문서요약 시스템에서 정확하고 실용적인 주제어 추출을 위하여 한국어의 의미론적 특성을 고려한 의미사전의 확장 방법론에 대하여 논하고자 한다. 첫째로 동의어 사전을 통하여 의미표지 분석의 정확도를 높이고자 한다. 둘째로 하위범주화사전에 가중치를 부여하여 구문과 의미 분석에서 가장 올바른 분석 결과를 결정하는 참조 정보로 활용하고자 한다. 셋째로 미등록 용언의 하위범주화패턴 예측을 통하여 한국어에서 접사 파생되는 용언에 대하여 원활한 의미 분석을 수행할 수 있도록 한다.

  • PDF

U-WIN을 이용한 한국어 복합명사 분해 및 의미태깅 시스템 (Korean Compound Noun Decomposition and Semantic Tagging System using User-Word Intelligent Network)

  • 이용훈;옥철영;이응봉
    • 정보처리학회논문지B
    • /
    • 제19B권1호
    • /
    • pp.63-76
    • /
    • 2012
  • 본 논문에서는 통계기반의 복합명사 분해 방법과 어휘의미망(U-WIN)과 사전 뜻풀이에서 추출한 의미관계 정보를 이용하는 한국어 복합명사 의미 태깅 시스템을 제안한다. 본 시스템은 크게 복합명사 분해, 의미제약, 그리고 의미 태깅의 세 가지 부분으로 이루어진다. 분해과정은 세종말뭉치에서 추출한 위치별명사 빈도를 사용하여 최적의 구성 명사 분해 후보를 선정하고 의미제약을 위한 구성 명사 재분해와 외래어 복원의 과정을 수행한다. 의미범위 제약과정은 유사도 비교의 계산량을 줄이고 정확도를 높이기 위해 원어 정보와 Naive Bayes Classifier를 이용해 가능한 경우 구성 명사의 의미를 선 제약한다. 의미 분석 및 태깅 과정에서는 bigram 구성 명사의 각 의미 유사도를 구하고 하나의 체인을 만들어가며 태깅을 수행한다. 본 시스템의 성능 평가를 위해 표준국어대사전에서 추출한 3음절 이상의 40,717개의 복합명사를 대상으로 의미 태깅된 테스트 셋을 구축하였다. 이를 이용한 실험에서 99.26%의 분해 정확도를 보였으며, 95.38%의 의미 분석 정확도를 보였다.

격틀 사전과 하위 범주 정보를 이용한 한국어 의미역 결정 (Korean Semantic Role Labeling Using Case Frame Dictionary and Subcategorization)

  • 김완수;옥철영
    • 정보과학회 논문지
    • /
    • 제43권12호
    • /
    • pp.1376-1384
    • /
    • 2016
  • 기계가 사람과 같이 문장을 처리하게 하려면 사람이 쓴 문장을 토대로 사람이 문장을 통해 발현하는 모든 문장의 표현 양상을 학습해 사람처럼 분석하고 처리할 수 있어야 한다. 이를 위해 기본적으로 처리되어야 할 부분은 언어학적인 정보처리이다. 언어학에서 통사론적으로 문장을 분석할 때 필요한 것이 문장을 성분별로 나눌 수 있고, 문장의 핵심인 용언을 중심으로 필수 논항을 찾아 해당 논항이 용언과 어떤 의미역 관계를 맺고 있는지를 파악할 수 있어야 한다. 본 연구에서는 국립국어원 표준국어대사전을 기반으로 구축한 격틀사전과 한국어 어휘 의미망에서 용언의 하위 범주를 자질로 구축한 CRF 모델을 적용하여 의미역을 결정하는 방법을 사용하였다. 문장의 어절, 용언, 격틀사전, 단어의 상위어 정보를 자질로 구축한 CRF 모델을 기반으로 하여 의미역을 자동으로 태깅하는 실험을 한 결과 정확률이 83.13%로 기존의 규칙 기반 방법을 사용한 의미역 태깅 결과의 정확률 81.2%보다 높은 성능을 보였다.

한국어 의미 표지 부착 말뭉치 구축을 위한 자동 술어-논항 분석기 개발 (A Development of the Automatic Predicate-Argument Analyzer for Construction of Semantically Tagged Korean Corpus)

  • 조정현;정현기;김유섭
    • 정보처리학회논문지B
    • /
    • 제19B권1호
    • /
    • pp.43-52
    • /
    • 2012
  • 의미 역 결정 (Semantic Role Labeling)은 문장의 각 요소들의 의미 관계를 파악하는 연구 분야로써 어휘 중의성 해소와 더불어 자연언어처리에서의 의미 분석에서 매우 중요한 위치를 차지하고 있다. 그러나 한국어의 경우에는 의미 역 결정에 필요한 언어 자원이 구축되지 못하여 연구의 진행이 매우 미진한 상황이다. 본 논문에서는 의미 역 결정에 필요한 언어 자원 중에서 가장 널리 사용되고 있는 PropBank의 한국어 버전의 구축을 위한 시작 단계로써 자동 술어-논항 분석기를 개발하였다. 자동 술어-논항 분석기는 크게 의미 어휘 사전과 자동 술어-논항 추출기로 구성된다. 의미 어휘 사전은 한국어 동사의 격틀 정보를 구축한 사전이며 자동 술어-논항 추출기는 구문 표지 부착된 말뭉치로부터 특정 술어와 관련있는 논항의 의미 부류를 결정하는 모듈이다. 본 논문에서 개발된 자동 술어-논항 분석기는 향후 한국어 PropBank의 구축을 용이하게 할 것이며, 궁극적으로는 한국어 의미 역 결정에 큰 역할을 할 것이다.

세종 전자사전과 한국어 어휘의미망을 이용한 용언의 어의 중의성 해소 (Word Sense Disambiguation of Predicate using Sejong Electronic Dictionary and KorLex)

  • 강상욱;김민호;권혁철;전성규;오주현
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권7호
    • /
    • pp.500-505
    • /
    • 2015
  • 21세기 세종계획을 통하여 개발된 세종 전자사전은 한국어 어휘의 내재정보에 대한 체계적인 분석 정보를 담고 있다. 이는 일반적으로 사용하는 텍스트 사전이 가지는 전산적 표상 문제를 해결하는데 많은 도움을 주고 있다. 자연언어처리 분야에서 끊이지 않는 문제인 어의 중의성 해소(Word Sense Disambiguation) 문제 또한 세종 전자사전의 상세 정보를 이용하여 해결할 수 있지만, 실제 제시된 문형과 논항의 선택제약 명사로는 어의 중의성 해소 문제를 해결하는 데 한계를 보인다. 본 연구에서는 세종 전자사전의 용언 하위범주화 정보를 이용한 어의 중의성 해소의 한계점을 보이고, 한국어 어휘의미망(Korean Lexico-semantic network)을 이용하여 논항의 선택제약 정보를 일반화한다.

확률적 문법규칙에 기반한 국어사전의 뜻풀이말 구문분석기 (A Parser of Definitions in Korean Dictionary based on Probabilistic Grammar Rules)

  • 이수광;옥철영
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권5호
    • /
    • pp.448-448
    • /
    • 2001
  • The definitions in Korean dictionary not only describe meanings of title, but also include various semantic information such as hypernymy/hyponymy, meronymy/holonymy, polysemy, homonymy, synonymy, antonymy, and semantic features. This paper purposes to implement a parser as the basic tool to acquire automatically the semantic information from the definitions in Korean dictionary. For this purpose, first we constructed the part-of-speech tagged corpus and the tree tagged corpus from the definitions in Korean dictionary. And then we automatically extracted from the corpora the frequency of words which are ambiguous in part-of-speech tag and the grammar rules and their probability based on the statistical method. The parser is a kind of the probabilistic chart parser that uses the extracted data. The frequency of words which are ambiguous in part-of-speech tag and the grammar rules and their probability resolve the noun phrase's structural ambiguity during parsing. The parser uses a grammar factoring, Best-First search, and Viterbi search In order to reduce the number of nodes during parsing and to increase the performance. We experiment with grammar rule's probability, left-to-right parsing, and left-first search. By the experiments, when the parser uses grammar rule's probability and left-first search simultaneously, the result of parsing is most accurate and the recall is 51.74% and the precision is 87.47% on raw corpus.

대화 말뭉치 구축을 위한 반자동 의미표지 태깅 시스템 (A Semi-Automatic Semantic Mark Tagging System for Building Dialogue Corpus)

  • 박준혁;이성욱;임윤섭;최종석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권5호
    • /
    • pp.213-222
    • /
    • 2019
  • 지능형 음성 대화 인터페이스 구현에 있어 핵심어의 의미표지는 사용자 의도 파악을 위한 중요한 요소이다. 대화시스템은 사용자 발화의 의도를 파악하기 위해 핵심어와 그 의미표지를 이용하여 발화의 의도를 결정한다. 하나의 핵심어는 여러 개의 의미표지를 가질 수 있는 중의성을 지닌다. 이러한 중의성을 지닌 핵심어를 사용자의 의도와 일치하는 의미표지로 결정하는 것은 단어 의미 분별 문제와 유사하다. 우리는 전사된 대화 말뭉치의 약 23%를 수동으로 의미를 부착하여 핵심어에 대한 의미표지 사전, 유의어 사전, 문맥벡터 사전을 먼저 구축한 후, 나머지 77% 대화 말뭉치에 존재하는 핵심어의 의미를 자동으로 부착한다. 중의성을 가진 핵심어는 문맥벡터 사전으로부터 문맥 벡터 유사도를 계산하여 의미를 결정한다. 핵심어가 미등록어인 경우에는 유의어 사전을 이용하여 가장 유사한 핵심어를 찾아 그 핵심어의 의미를 부착한다. 중의성을 가진 고빈도 핵심어 3개와 저빈도 핵심어 3개를 말뭉치에서 선정하여 제안 시스템의 성능을 평가하였다. 실험결과, 수동으로 구축한 말뭉치를 사용하였을 때 약 54.4%의 정확도를 얻었고, 반자동으로 확장한 말뭉치를 사용하였을 때 약 50.0%의 정확도를 얻었다.