• Title/Summary/Keyword: Semantic Classification

Search Result 329, Processing Time 0.025 seconds

Image retrieval based on a combination of deep learning and behavior ontology for reducing semantic gap (시맨틱 갭을 줄이기 위한 딥러닝과 행위 온톨로지의 결합 기반 이미지 검색)

  • Lee, Seung;Jung, Hye-Wuk
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.11
    • /
    • pp.1133-1144
    • /
    • 2019
  • Recently, the amount of image on the Internet has rapidly increased, due to the advancement of smart devices and various approaches to effective image retrieval have been researched under these situation. Existing image retrieval methods simply detect the objects in a image and carry out image retrieval based on the label of each object. Therefore, the semantic gap occurs between the image desired by a user and the image obtained from the retrieval result. To reduce the semantic gap in image retrievals, we connect the module for multiple objects classification based on deep learning with the module for human behavior classification. And we combine the connected modules with a behavior ontology. That is to say, we propose an image retrieval system considering the relationship between objects by using the combination of deep learning and behavior ontology. We analyzed the experiment results using walking and running data to take into account dynamic behaviors in images. The proposed method can be extended to the study of automatic annotation generation of images that can improve the accuracy of image retrieval results.

Multilingual Product Retrieval Agent through Semantic Web and Semantic Networks (Semantic Web과 Semantic Network을 활용한 다국어 상품검색 에이전트)

  • Moon Yoo-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.2
    • /
    • pp.1-13
    • /
    • 2004
  • This paper presents a method for the multilingual product retrieval agent through XML and the semantic networks in e-commerce. Retrieval for products is an important process, since it represents interfaces of the customer contact to the e-commerce. Keyword-based retrieval is efficient as long as the product information is structured and organized. But when the product information is expressed across many online shopping malls, especially when it is expressed in different languages with cultural backgrounds, buyers' product retrieval needs language translation with ambiguities resolved in a specific context. This paper presents a RDF modeling case that resolves semantic problems in the representation of product information and across the boundaries of language domains. With adoption of UNSPSC code system, this paper designs and implements an architecture for the multilingual product retrieval agents. The architecture is based on the central repository model of product catalog management with distributed updating processes. It also includes the perspectives of buyers and suppliers. And the consistency and version management of product information are controlled by UNSPSC code system. The multilingual product names are resolved by semantic networks, thesaurus and ontology dictionary for product names.

  • PDF

Modeling and Validation of Semantic Constraints for ebXML Business Process Specifications (ebXML 비즈니스 프로세스 명세를 위한 의미 제약의 모델링과 검증)

  • Kim, Jong-Woo;Kim, Hyoung-Do
    • Asia pacific journal of information systems
    • /
    • v.14 no.1
    • /
    • pp.79-100
    • /
    • 2004
  • As a part of ebXML(Electronic Business using eXtensible Markup Language) framework, BPSS(Business Process Specification Schema) has been provided to support the direct specification of the set of elements required to configure a runtime system in order to execute a set of ebXML business transactions. The BPS,' is available in two stand-alone representations, a UML version and an XML version. Due to the limitations of UML notations and XML syntax, however, current ebXML BPSS specification fails to specify formal semantic constraints completely. In this study, we propose a constraint classification scheme for the BPSS specification and describe how to formally represent those semantic constraints using OCL(Object Constraint Language). As a way to validate p Business Process Specification(BPS) with the formal semantic constraints, we suggest a rule-based approach to represent the formal constraints and demonstrate its detailed mechanism for applying the rule-based constraints to the BPS with a prototype implementation.

A Deep Learning-Based Image Semantic Segmentation Algorithm

  • Chaoqun, Shen;Zhongliang, Sun
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.98-108
    • /
    • 2023
  • This paper is an attempt to design segmentation method based on fully convolutional networks (FCN) and attention mechanism. The first five layers of the Visual Geometry Group (VGG) 16 network serve as the coding part in the semantic segmentation network structure with the convolutional layer used to replace pooling to reduce loss of image feature extraction information. The up-sampling and deconvolution unit of the FCN is then used as the decoding part in the semantic segmentation network. In the deconvolution process, the skip structure is used to fuse different levels of information and the attention mechanism is incorporated to reduce accuracy loss. Finally, the segmentation results are obtained through pixel layer classification. The results show that our method outperforms the comparison methods in mean pixel accuracy (MPA) and mean intersection over union (MIOU).

Comparing the Performances of Intent Classifications by Encoder Layer (Encoder Layer를 이용한 의도 분류 성능 비교)

  • Ahn, Hyeok-Ju;Kim, Hye-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.410-413
    • /
    • 2021
  • 본 논문에서는 분류 모델의 주류로 사용되고 있는 Encoder 기반 사전학습 모델(BERT, ALBERT, ELECTRA)의 내부 Encoder Layer가 하부 Layer에서는 Syntactic한 분석을 진행하고 상부 Layer로 갈수록 Semantic 한 분석을 진행하는 점, Layer가 구성됨에 따라 Semantic 정보가 Syntactic 정보를 개선해 나간다 점에 기반한 기존 연구 결과를 바탕으로 Encoder Layer를 구성함에 따라 어떻게 성능이 변화하는지 측정한다. 그리고 의도 분류를 위한 학습 데이터 셋도 분류하고자 하는 성격에 따라 Syntactic한 구성과 Semantic한 구성을 보인다는 점에 착안하여 ALBERT 및 ELECTRA를 이용한 의도 분류 모델을 구축하고 각 데이터 셋에 맞는 최적의 Encoder Layer 구성을 가지는 모델을 비교한 결과, 두 데이터 셋 간에 다른 Layer 구성을 보이는 점과 기존 모델보다 성능이 향상됨을 확인하였다.

  • PDF

Building of a Hierarchical Semantic Map with Classified Area Information in Home Environments (가정환경에서의 분류된 지역정보를 통한 계층적 시맨틱 지도 작성)

  • Park, Joong-Tae;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.4
    • /
    • pp.252-258
    • /
    • 2012
  • This paper describes hierarchical semantic map building using the classified area information in home environments. The hierarchical semantic map consists of a grid, CAIG (Classified Area Information in Grid), and topological map. The grid and CAIG maps are used for navigation and motion selection, respectively. The topological map provides the intuitive information on the environment, which can be used for the communication between robots and users. The proposed semantic map building algorithm can greatly improve the capabilities of a mobile robot in various domains, including localization, path-planning and HRI (Human-Robot Interaction). In the home environment, a door can be used to divide an area into various sections, such as a room, a kitchen, and so on. Therefore, we used not only the grid map of the home environment, but also the door information as a main clue to classify the area and to build the hierarchical semantic map. The proposed method was verified through various experiments and it was found that the algorithm guarantees autonomous map building in the home environment.

A Study on the Semantic Relationships in Knowledge Organization Systems (지식조직체계의 용어관계 유형에 관한 연구)

  • Baek Ji-Won;Chung Yeon-Kyoung
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.39 no.4
    • /
    • pp.119-138
    • /
    • 2005
  • The purpose of this study is to analyze and systematize the semantic relationships in knowledge organization systems(KOS) . For this purpose, Classification systems, thesaurus, subject headings, semantic networks, ontology, databases were analyzed in terms of the semantic relationships between terms. Also, various kinds of the terminological relationships not only in the current KOS but in the theoretical researches were collected and analyzed. In addition, six proposals were suggested for the organized system of the terminological relationships for the future uses.

Research on Subjective-type Grading System Using Syntactic-Semantic Tree Comparator (구문의미트리 비교기를 이용한 주관식 문항 채점 시스템에 대한 연구)

  • Kang, WonSeog
    • The Journal of Korean Association of Computer Education
    • /
    • v.21 no.6
    • /
    • pp.83-92
    • /
    • 2018
  • The subjective question is appropriate for evaluation of deep thinking, but it is not easy to score. Since, regardless of same scoring criterion, the graders are able to produce different scores, we need the objective automatic evaluation system. However, the system has the problem of Korean analysis and comparison. This paper suggests the Korean syntactic analysis and subjective grading system using the syntactic-semantic tree comparator. This system is the hybrid grading system of word based and syntactic-semantic tree based grading. This system grades the answers on the subjective question using the syntactic-semantic comparator. This proposed system has the good result. This system will be utilized in Korean syntactic-semantic analysis, subjective question grading, and document classification.

Efficient Classification of User's Natural Language Question Types using Word Semantic Information (단어 의미 정보를 활용하는 이용자 자연어 질의 유형의 효율적 분류)

  • Yoon, Sung-Hee;Paek, Seon-Uck
    • Journal of the Korean Society for information Management
    • /
    • v.21 no.4 s.54
    • /
    • pp.251-263
    • /
    • 2004
  • For question-answering system, question analysis module finds the question points from user's natural language questions, classifies the question types, and extracts some useful information for answer. This paper proposes a question type classifying technique based on focus words extracted from questions and word semantic information, instead of complicated rules or huge knowledge resources. It also shows how to find the question type without focus words, and how useful the synonym or postfix information to enhance the performance of classifying module.

Red Tide Image Recognition using Semantic Features (의미 특징을 이용한 적조 이미지 인식)

  • Park, Sun;Lee, Jin-Seok;Lee, Seong-Ro
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.5
    • /
    • pp.23-29
    • /
    • 2011
  • There have been many studies on red tide due to increasing damage from red tide on fishing and aquaculture industry. However, internal study of automatic red tide image classification is not enough. Recognition of red tide algae is difficult because they do not have matching center features for recognizing algae image object. Previously studies used a few type of red tide algae for image classification. In this paper, we proposed the red tide image recognition method using semantic features of NMF and roundness of image objects.