• Title/Summary/Keyword: Selfadjoint operator

Search Result 7, Processing Time 0.016 seconds

On Normal Products of Selfadjoint Operators

  • Jung, Il Bong;Mortad, Mohammed Hichem;Stochel, Jan
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.3
    • /
    • pp.457-471
    • /
    • 2017
  • A necessary and sufficient condition for the product AB of a selfadjoint operator A and a bounded selfadjoint operator B to be normal is given. Various properties of the factors of the unitary polar decompositions of A and B are obtained in the case when the product AB is normal. A block operator model for pairs (A, B) of selfadjoint operators such that B is bounded and AB is normal is established. The case when both operators A and B are bounded is discussed. In addition, the example due to Rehder is reexamined from this point of view.

Comparative Analysis of Spectral Theory of Second Order Difference and Differential Operators with Unbounded Odd Coefficient

  • Nyamwala, Fredrick Oluoch;Ambogo, David Otieno;Ngala, Joyce Mukhwana
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.2
    • /
    • pp.297-305
    • /
    • 2020
  • We show that selfadjoint operator extensions of minimal second order difference operators have only discrete spectrum when the odd order coefficient is unbounded but grows or decays according to specific conditions. Selfadjoint operator extensions of minimal differential operator under similar growth and decay conditions on the coefficients have a absolutely continuous spectrum of multiplicity one.

NORM CONVERGENCE OF THE LIE-TROTTER-KATO PRODUCT FORMULA AND IMAGINARY-TIME PATH INTEGRAL

  • Ichinose, Takashi
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.337-348
    • /
    • 2001
  • The unitary Lie-Trotter-Kato product formula gives in a simplest way a meaning to the Feynman path integral for the Schroding-er equation. In this note we want to survey some of recent results on the norm convergence of the selfadjoint Lie-Trotter Kato product formula for the Schrodinger operator -1/2Δ + V(x) and for the sum of two selfadjoint operators A and B. As one of the applications, a remark is mentioned about an approximation therewith to the fundamental solution for the imaginary-time Schrodinger equation.

  • PDF

On the structure of discrete spectrum of the non-selfadjoint system of differential equations in the first order

  • Akin, Omer;Bairamov, Elgiz
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.401-413
    • /
    • 1995
  • This paper is concerned with the problem given below $$ (1.1) i\frac{dx}{du_1(x,\lambda)} + q1(x)u_2(x,\lambda) = \lambdau_1(x,\lambda) 0 \leq x < \infty - i\frac{dx}{du_2(x,\lambda)} + q2(x)u_1(x,\lambda) = \lambdau_2(x,\lambda), $$ $$ (2) u_2(0,\lambda) - hu_1(0,\lambda) = 0 $$ where $\lambda$ is a complex parameter and h is a non-zero complex number.

  • PDF

ON THE INVERSE PROBLEM FOR STURM-LIOUVILLE OPERATOR WITH A NONLINEAR SPECTRAL PARAMETER IN THE BOUNDARY CONDITION

  • Mamedov, Khanlar R.
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1243-1254
    • /
    • 2009
  • The inverse scattering problem is investigated for some second order differential equation with a nonlinear spectral parameter in the boundary condition on the half line [0, $\infty$). In the present paper the coefficient of spectral parameter is not a pure imaginary number and the boundary value problem is not selfadjoint. We define the scattering data of the problem, derive the main integral equation and show that the potential is uniquely recovered.

SOME TRACE INEQUALITIES FOR CONVEX FUNCTIONS OF SELFADJOINT OPERATORS IN HILBERT SPACES

  • Dragomir, Silvestru Sever
    • Korean Journal of Mathematics
    • /
    • v.24 no.2
    • /
    • pp.273-296
    • /
    • 2016
  • Some new trace inequalities for convex functions of self-adjoint operators in Hilbert spaces are provided. The superadditivity and monotonicity of some associated functionals are investigated. Some trace inequalities for matrices are also derived. Examples for the operator power and logarithm are presented as well.