• Title/Summary/Keyword: Self-tuning controllers

Search Result 43, Processing Time 0.026 seconds

Nonlinear PID Controller with Neural Network based Compensator (신경회로망 보상기를 갖는 비선형 PID 제어기)

  • Lee, Chang-Gu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.225-234
    • /
    • 2000
  • In this paper, we present an nonlinear PID controller with network based compensator which consists of a conventional PID controller that controls the linear components and neuro-compensator that controls the output errors and nonlinear components. This controller is based on the Harris's concept where he explained that the adaptive controller consists of the PID control term and the disturbance compensating term. The resulting controller's architecture is also found to be very similar to that of Wang's controller. This controller adds a self-tuning ability to the existing PID controller without replacing it by compensating the output errors through the neuro-compensator. Various simulations and comparative studies have proven that the proposed nonlinear PID controller produces superior results to other existing PID controllers. When applied to an actual magnetic levitation system which is known to be very nonlinear, it has also produced an excellent results.

  • PDF

Design of Sophisticated Self-Tuning Fuzzy Logic Controllers Using Genetic Algorithms (유전알고리즘을 이용한 정교한 자기동조 퍼지 제어기의 설계)

  • Hwang, Yon-Won;Kim, Lark-Kyo;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.509-511
    • /
    • 1998
  • Design of fuzzy logic controllers encounters difficulties in the selection of optimized membership function and fuzzy rule base, which is traditionally achieved by tedious trial-and-error process. In this paper We proposed a new method to generate fuzzy logic controllers throught genetic algorithm(GA). The controller design space is coded in base-7 strings chromosomes, where each bit gene matches the 7 discrete fuzzy value. The developed approach is subsequently applied to the design of proportional plus integral type fuzzy controller for a do-servo motor control system. It was presented in discrete fuzzy linguistic value, and used a membership function with Gaussian curve. The performance of this control system is demonstrated higher than that of a conventional PID controller and fuzzy logic controller(FLC).

  • PDF

Design of Self-Tuning Fuzzy Logic Controllers using Genetic Algorithms (유전알고리즘을 이용한 자기동조 퍼지 제어기의 설계)

  • Suh, Jae-Kun;Kim, Tae-Eun;Kwon, Hyuk-Jin;Kim, Lark-Kyo;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1374-1376
    • /
    • 1996
  • In this paper We proposed a new method to generate fuzzy logic controllers through genetic algorithm(GA). In designing of fuzzy logic controllers encounters difficulties in the selection of optimized member-ship functions, gains and rule base, which is conventionally achieved by a tedious trial-and-error process. This paper develops genetic algorithms for automatic design of high performance fuzzy logic controllers which can overcome nonlinearities in many engineering control applications. The rule-base is coded in base-7 strings by generated from random function. Which can be presented in discrete fuzzy linguistic value, and using membership function with Gaussian curve. To verify the validity of this fuzzy logic controller it is compared with conventional fuzzy logic controller(FLC) and PID controller.

  • PDF

Self-tuning control with bounded input constraints

  • Jee, Gyu-In
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1655-1658
    • /
    • 1991
  • This paper considers the design and analysis of one-step ahead optimal and adaptive controllers, under the restriction that a known constraint on the input amplitude is imposed. It is assumed that the discrete-time single-input, single-output system to be controlled is linear, except for inequality constraints on the input. The objective function to be minimized is an one-step quadratic function, where polynomial weights on the input and output are included. Both the known parameter and unknown parameter (indirect adaptive controller) cases are examined.

  • PDF

Immune Algorithms Based 2-DOF Controller Design and Tuning For Power Stabilizer

  • Kim, Dong-Hwa;Park, Jin-Ill
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2278-2282
    • /
    • 2003
  • In this paper the structure of 2-DOF controller based on artificial immune network algorithms has been suggested for nonlinear system. Up to present time, a number of structures of the 2-DOF controllers are considered as 2-DOF (2-Degrees Of Freedom) control functions. However, a general view is provided that they are the special cases of either the state feedback or the modification of PID controllers. On the other hand, the immune network system possesses a self organizing and distributed memory, also it has an adaptive function by feed back law to its external environment and allows a PDP (parallel distributed processing) network to complete patterns against the environmental situation, since antibody recognizes specific antigens which are the foreign substances that invade living creatures. Therefore, it can provide optimal solution to external environment. Simulation results by immune based 2-DOF controller reveal that immune algorithm is an effective approach to search for 2-DOF controller.

  • PDF

Design of Multivariable Self Tuning PID Controllers (다변수 자기동조 PID 제어기의 설계)

  • Cho, Hyun-Seob;Jun, Ho-Ik
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.341-343
    • /
    • 2010
  • The parameters of PID controller should be readjusted whenever system character change. In spite of a rapid development of control theory, this work needs much time and effort of expert. In this paper, to resolve this defect, after the sample of parameters in the changeable limits of system character is obtained, these parametrs are used as desired values of back propagation learning algorithm, also neural network auto tuner for PID controller is proposed by determing the optimum structure of neural network. Simulation results demonstrate that auto-tuning proper to system character can work well.

  • PDF

Development of Self Tuning and Adaptive Fuzzy Controller to control of Induction Motor (유도전동기 드라이브의 제어를 위한 자기동조 및 적응 퍼지제어기 개발)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.33-42
    • /
    • 2010
  • The induction motor drive applied to field oriented control is widely used in industry applications. However, it is deceased performance and authenticity by saturation, temperature changing, disturbance and parameters changing because modeling of induction motor is nonlinear and complex. In order to control variable speed operation, conventional PI-like controllers are commonly used. These controllers provide limited good performance over a wide range of operation, even under ideal field oriented conditions. This paper proposes self tuning PI controller based on fuzzy-neural network(FNN)-PI controller that is implemented using fuzzy control, neural network, and adaptive fuzzy controller(AFC). Also, this paper proposes estimation of speed using ANN. The proposed control algorithm is applied to induction motor drive system using FNN-PI, AFC and ANN controller. Also, this paper proposes the anlysis results to verify the effectiveness of controller.

Cartesian Coordinate Control of Robot Motion (로보트 운동에 대한 공간 좌표 제어)

  • 노영식;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.5
    • /
    • pp.177-184
    • /
    • 1986
  • An effective cartesian coordinate model is presented to control a robot motion along a prescribed timebased hand trajectory in cartesian coordinates and to provide an adaptive feedback design approach utilizing self-tuning control methods without requiring a detailed mathematical description of the system dynamics. Assuming that each of the hybrid variable set of velocities and forces at the cartesian coordinate level is mutually independent, the dynamic model for the cartesian coordinate control is reduced to first-order SISO models for each degree of freedom of robot hand, including a term to represent all unmodeled effects, by which the number of parameters to be identified is minimized. The self-tuners are designde to minimize a chosen performance criterion, and the computed control forces are resolved into applied joint torques by the Jacobian matrix. The robustness of the model and controller is demonstrated by comparing with the other catesian coordinate controllers.

  • PDF

Development of Self-Tuning and Adaptive Fuzzy Controller to Control Induction Motor Drive (유도전동기 드라이브의 제어를 위한 자기동조 및 적응 퍼지제어기 개발)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.32-34
    • /
    • 2009
  • The field oriented control of induction motors is widely used in high performance applications. However, detuning caused by parameter disturbance still limits the performance of these drives. In order to accomplish variable speed operation, conventional PI-like controllers are commonly used. These controllers provide limited good Performance over a wide range of operation, even under ideal field oriented conditions. This paper is proposed model reference adaptive fuzzy control(MFC) and artificial neural network(ANN) based on the vector controlled induction motor drive system. Also, this paper is proposed control of speed and current using fuzzy adaption mechanism(FAM), MFC and estimation of speed using ANN. The proposed control algorithm is applied to induction motor drive system using FAM, MFC and ANN controller. Also, this paper is proposed the analysis results to verify the effectiveness of this controller.

  • PDF

A Design of Adaptive Controller based on Immune System (면역시스템에 기반한 적응제어기 설계에 관한 연구)

  • Lee Kwon Soon;Lee Young Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1137-1147
    • /
    • 2004
  • In this paper, we proposed two types of adaptive control mechanism which is named HIA(Humoral Immune Algorithm) PID and CMIA(Cell-Mediated Immune Algorithm) controller based on biological immune system under engineering point of view. The HIA PID which has real time control scheme is focused on the humoral immunity and the latter which has the self-tuning mechanism is focused on the T-cell regulated immune response. To verify the performance of the proposed controller, some experiments for the control of AGV which is used for the port automation to carry container without human are performed. The experimental results for the control of steering and speed of an AGV system illustrate the effectiveness of the proposed control scheme. Moreover, in that results, proposed controllers have better performance than other conventional PID controller and intelligent control method which is the NN(neural network) PID controller.