• Title/Summary/Keyword: Self-compacting Concrete

Search Result 225, Processing Time 0.026 seconds

Optimum Mix Proportion and Characteristics of the Combined Self Compacting Concrete according to Cement Types (시멘트 종류에 따른 병용계 자기충전 콘크리트의 최적배합비와 특성)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.55-64
    • /
    • 2009
  • This study is aimed to derive the optimum mix proportion of the combined self compacting concrete according to cement types (blast-furnace slag cement and belite cement) and to propose the basic data to field construction work after evaluating the quality properties. Specially, lime stone powder (LSP) as binder and viscosity agent are used in the combined self compacting concrete because slurry wall of an underground LNG storage tank should be kept stability of quality during concrete working. Replacement ratio of LSP is determined by confined water ratio test and main design factors including fine aggregate ratio ($S_r$), coarse aggregate ratio ($G_v$) and water-cement ratio (W/C) are selected. Also, quality properties including setting time, bleeding content, shortening depth and hydration heat on the optimum mix proportion of the combined self compacting concrete according to cement type are compared and analyzed. As test results, the optimum mix proportion of the combined self compacting concrete according to cement type is as followings. 1) Slag cement type-replacement ratio of LSP 13.5%, $S_r$ 47% and W/C 41%. 2) Belite cement type-replacement ratio of LSP 42.7%, Sr 43% and W/C 51%. But optimum coarse aggregate ratio is 53% regardless of cement types. Also, as test results regarding setting time, bleeding content, shortening depth and hydration heat of the combined self compacting concrete by cement type, belite cement type is most stable in the quality properties and is to apply the actual construction work.

Long-term flexural cracking control of reinforced self-compacting concrete one way slabs with and without fibres

  • Aslani, Farhad;Nejadi, Shami;Samali, Bijan
    • Computers and Concrete
    • /
    • v.14 no.4
    • /
    • pp.419-444
    • /
    • 2014
  • In this study experimental result of a total of eight SCC and FRSCC slabs with the same cross-section were monitored for up to 240 days to measure the time-dependent development of cracking and deformations under service loads are presented. For this purpose, four SCC mixes are considered in the test program. This study aimed to compare SCC and FRSCC experimental results with conventional concrete experimental results. The steel strains within the high moment regions, the concrete surface strains at the tensile steel level, deflection at the mid-span, crack widths and crack spacing were recorded throughout the testing period. Experimental results show that hybrid fibre reinforced SCC slabs demonstrated minimum instantaneous and time-dependent crack widths and steel fibre reinforced SCC slabs presented minimum final deflection.

Stress-strain relationships for steel fiber reinforced self-compacting concrete

  • Aslani, Farhad;Natoori, Mehrnaz
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.295-322
    • /
    • 2013
  • Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, toughness, energy absorption capacity and fracture toughness. Modification in the mix design of SCC may have a significant influence on the SFRSCC mechanical properties. Therefore, it is vital to investigate whether all of the assumed hypotheses for steel fiber reinforced concrete (SFRC) are also valid for SFRSCC structures. Although available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates material's mechanical properties. The present study includes: a) evaluation and comparison of the current analytical models used for estimating the mechanical properties of SFRSCC and SFRC, b) proposing new relationships for SFRSCC mixtures mechanical properties. The investigated mechanical properties are based on the available experimental results and include: compressive strength, modulus of elasticity, strain at peak compressive strength, tensile strength, and compressive and tensile stress-strain curves.

Optimum Mix Proportion of the High Strength and Self Compacting Concrete Used Above-Ground LNG Storage Tank (지상식 LNG 저장탱크용 고강도 자기충전 콘크리트의 최적배합에 관한 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.99-107
    • /
    • 2011
  • This study is to performed to find the optimum mix proportion of the high strength and self compacting concrete for the above-ground LNG storage tank construction and field application. If LNG storage tank wall thicknesscan be reduced, the construction cost and quality can be improved by using self-compacting high strength concrete with compressive strength 60~80 MPa. For this purpose, low heat cement (Type IV) and class F fly ash are used in concrete mix to control hydration heat, flowability, and viscosity. Mix design variables of unit water, fly ash replacement ratio, water-binder ratio, and fine aggregate ratio are selected and tested for material properties and manufacturing cost of the concrete. Also, fly ash replacement ratio is considered using confined water ratio test. The test results showed that the optimum mix proportion of the self-compacting high strength concrete characteristics are as follows. 1) In case of the concrete with specified compressive strength of 60 MPa, the optimum mix proportion is fly ash replacement ratio of 20% and water- binder ratio of 27~30%. 2) In case of the concrete with the strength of 80 MPa, the optimum mix proportion is fly ash replacement ratio of 10% and water-binder ratio 25%. But unit water and fine aggregate ratio are 165 $kg/m^3$ and $51{\pm}2%$, respectively, regardless of the traget concrete compressive strength range. Also, test results showed that concrete manufacturing cost of 60 MPa and 80 MPa concrete require additional costs of 14~22% and 33%, respectively, compared to the manufacturing cost of 40 MPa concrete. Therefore, application of the self-compacting high strength concrete has proven to be economical in the perspective of the material cost, quality control, and site management.

Effect of fine fillers from industrial waste and various chemical additives on the placeability of self-compacting concrete

  • Utepov, Yelbek;Akhmetov, Daniyar;Akhmatshaeva, Ilnur
    • Computers and Concrete
    • /
    • v.25 no.1
    • /
    • pp.59-65
    • /
    • 2020
  • The premise for the study reflected in this article is the need to dispose of industrial waste, which is increasingly being used in the construction materials industry. Also, dynamically developing building industry demands attention of scientists and a direction of their works on improvement of the technology of carrying out construction works. Thus, the article is devoted to studying the influence of various chemical additives and fine fillers (industrial wastes) available in Kazakhstan on self-compacting concrete (SCC) mixtures and its rheological, physical, and technical properties. According to the studies, revealed the most efficient type of fine-dispersed filler and the most optimal type of chemical additive to enable obtaining a high-quality SCC mixture based on local raw materials. As a result, the use of microsilica in comparison with other industrial wastes resulted in a conglomerate with high compressive strength of SCC at early terms of curing. In terms of economic efficiency and quality improvement, the results of study are of practical value for the manufacturers of ready-mixed concrete operating in Kazakhstan.

A study on the rheological properties of superfluidity self compacting concrete utilizing tailings from the tungsten mine (광산광미를 활용한 초유동 자기충전 콘크리트의 유변학적 특성 연구)

  • Choi, Yun-Wang;Kim, Yong-Jic;Choi, Wook;Lee, Kwang-Myong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.89-92
    • /
    • 2006
  • This study has focused on the possibility for recycling of tailings from the Sangdong tungsten mine as powder of superfluidity self-compacting concrete. The experimental tests for slump-flow, time required to reach 500mm of slump flow(sec), time required to flow through V-funnel(sec) and filling height of U-box test(mm) were carried out in accordance with the specified by the Japanese Society of Civil Engineering(JSCE). The result of this study, in case of superfluidity self-compacting concrete mixed with tailings, slump-flow was decreased with increasing mixing ratio. But time required to reach 500mm of slump flow(sec), time required to flow through V-funnel(sec) and filling height of U-box test(mm) were satisfied a prescribed range.

  • PDF

Cracking Characteristics of RC Beams made of High Flowing Self-Compacting Concrete (고유동 자기충전 철근 콘크리트 보의 균열특성)

  • Ahn, Tae-Ho;Kim, Jin-Cheol;Kim, Hong-Sam;Ha, Sung-Kug;Lee, Haeng-Ki;Choi, Yun-Wang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.425-426
    • /
    • 2010
  • The cracking characteristics of high flowing self-compacting concrete(HSCC) and conventional concrete(CC) was investigated. HSCC shows high crack resistance compare to CC due to self compacting properites.

  • PDF

Flowing Characteristic of High Flowing Self-Compacting Concrete with mixing Steel Fiber (강섬유 혼입에 따른 고유동 자기충전 콘크리트의 유동특성)

  • Choi, Yun-Wang;Choi, Wook;Kim, Gi-Beom;Jeong, Jae-Gwon;Ahn, Tae-Ho;Eom, Joo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.461-464
    • /
    • 2008
  • This study is compactability and Passing ability to get to know the flowing characteristic of high flowing self-compacting concrete with mixing steel fiber of various size and diameter. After flowing test, size and diameter are getting longer, flowing performance is getting lower. It meets the standard of combined high flowing self-compacting concrete of JSCE 2 grade and passing performance from ASTM C 1621. Through this study, it can be possible to be applied in site of HSCC with mixing steel fiber.

  • PDF

A Study on the Flowability Properties of the High Flowing Self-Compacting Concrete for Members of Bridge Precast (프리캐스트 교량부재용 초유동 자기충전 콘크리트의 유동 특성에 관한 연구)

  • Choi, Yun Wang;Kim, Yong Jic;Kang, Hyun Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.155-163
    • /
    • 2008
  • On the construction site with trends of large scale, high rise and specialization, testing construction of high performance concrete, superior to conventional concrete, is continued to increase. For bridge construction, application of full staging method is gradually decreasing due to noise, dust, and prolonged construction period. Recently, precast construction, which is optimized to urban environment and shorter work period, gains popularity significantly. In bridge structure, overcrowding arrangement of bar is used to ensure its safety. For the manufacturing of overcrowding arrangement of bar, High flowing self-compacting concrete, which is superior to conventional concrete in flowability and compacting property, should be implemented. In this study, the application of blast-furnace slag and fly ash to binary and ternary blended system on the High flowing self-compacting concrete for bridge structure with overcrowding arrangement of bar is evaluated by flowability in accordance with the first class regulations of Japan Society of Civil Engineering (JSCE).

Effect of metakaolin on the properties of conventional and self compacting concrete

  • Lenka, S.;Panda, K.C.
    • Advances in concrete construction
    • /
    • v.5 no.1
    • /
    • pp.31-48
    • /
    • 2017
  • Supplementary cementitious materials (SCM) have turned out to be a vital portion of extraordinary strength and performance concrete. Metakaolin (MK) is one of SCM material is acquired by calcinations of kaolinite. Universally utilised as pozzolanic material in concrete to enhance mechanical and durability properties. This study investigates the fresh and hardened properties of conventional concrete (CC) and self compacting concrete (SCC) by partially replacing cement with MK in diverse percentages. In CC and SCC, partial replacement of cement with MK varies from 5-20%. Fresh concrete properties of CC are conducted by slump test and compaction factor tests and for SCC, slump flow, T500, J-Ring, L-Box, V-Funnel and U-Box tests. Hardened concrete characteristics are investigated by compressive, split tensile and flexural strengths at age of 7, 28 and 90 days of curing under water. Carbonation depth, water absorption and density of MK based CC and SCC was also computed. Fresh concrete test results indicated that increase in MK replacement increases workability of concrete in a constant w/b ratio. Also, outcomes reveal that concrete integrating MK had greater compressive, flexural and split tensile strengths. Optimum replacement level of MK for cement was 10%, which increased mechanical properties and robustness properties of concrete.