• Title/Summary/Keyword: Self-compacting Concrete

Search Result 225, Processing Time 0.022 seconds

The Behavior of Fresh Concrete to Pass between Bars (굳지 않은 콘크리트의 간극통과거동)

  • 오상균
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.97-102
    • /
    • 2002
  • The ability to pass between bars is one of the most important performance of self-compacting concrete or high-flowability concrete since it determines the final filling capacity which influences the strength and durability of hardened concrete in structure. Therefore it has been evaluated by many researchers using different kinds of testing apparatuses. The assessments of passing ability, however, differ largely according to the style, the dimension and the criteria in apparatuses, and the value obtained from one apparatus cannot be converted those of the others. There needs a rheological approach to the better understanding of the passing behavior of fresh concrete between reinforcing bars, where the flow velocity of concrete becomes slow and the blockade sometimes occurs due to the interference between aggregates and reinforcing bars. Experimental works were conducted to clarity the effects of the clearance between reinforcing bars, the volume of aggregate and the rheological properties of matrix on the behavior from the rheological point view and showed the rational mix proportioning of concrete.

  • PDF

The properties of High Performance Concrete Using Fly Ash and Blast-Furnace Slag (플라이애쉬 및 고로슬래그를 사용한 고성능콘크리트의 특성)

  • 이승한;정용욱;박정준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.275-280
    • /
    • 1998
  • In this study, to increase fluidity and resistance of segregation of materials, the effect of each of the materials, which have effects on high performance concrete from investigating the properties of strength and drying shrinkage of high performance concrete made by the basic mix proportion used fly-ash and ground granulated blast-furnace slag after hardening, has been checked. By the results of this experiment, fluidity on W/C=34% was satisfied within slump-flow 65$\pm$5cm and U-type self-compacting difference 5cm. On the properties of strength, high performance concrete produced compressive strength over 400kg/$\textrm{cm}^2$ in 28days when powder was replaced by 40% of fly-ash and 60% of ground granulated blast-furnace slag. And compressive strength was taken over 600kg/$\textrm{cm}^2$ equal to non-replacement in 91days. Also, the length change of concrete with the addition of fly-ash was smaller than that without it. Therefore, it may be effective on the decrease of drying shrinkage volume.

  • PDF

Effect of Hollow Glass Powder on the Self-Compacting Concrete (유공 유리분말이 자기충전 콘크리트의 특성에 미치는 영향)

  • Yoon, Seob;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.141-149
    • /
    • 2018
  • In this study, compacting, passing performance, segregation resistance and rheological properties were tested to improve the stability of fresh concrete in the production and construction of self-compacting concrete (SCC) using hollow glass powder(GB). As a result, T50 reaching time was shortened up to amount of GB $2.0kg/m^3$. The compacting according to the amount of GB was improved by ball bearing effect of GB. However, T50 reaching time was slightly increased at $4.0kg/m^3$. In the case of passing performance, the result showed that plain was Class 1, GB $0.5{\sim}2.0kg/m^3$ was Class 0, GB $4.0kg/m^3$ was Class 1. Therefore, the passing performance was improved with 'No blocking' up to amount of GB $2.0kg/m^3$. Passing performance Block step (PJ) number by J-ring method was also best at GB $1.0kg/m^3$. In the case of segregation resistance according to the amount of GB, dynamic segregation resistance was increased compared to plain regardless of the amount of GB. And static segregation resistance showed 2.5% of segregation rate at GB $1.0kg/m^3$. Therefore, it was greatly improved compared to plain (12.5%). In the case of rheology property according to the amount of GB, plastic consistency by increasing of GB content didn't show big difference. However, yield stress by increasing of GB content was decreased with GB $1.0kg/m^3$. In conclusion, GB $1.0kg/m^3$ was effective for improvement of compacting, passing performance and yield stress. Also, it will be useful for stability of SCC by improving segregation.

Assessment of flowing ability of self-compacting mortars containing recycled glass powder

  • Alipour, Pedram;Namnevis, Maryam;Tahmouresi, Behzad;Mohseni, Ehsan;Tang, Waiching
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.65-76
    • /
    • 2019
  • This paper investigates the effect of recycled glass powder (RGP) on flowing properties of self-compacting mortars (SCMs) containing different ratios of fillers and superplasticizer dosages. Fly ash (FA), nano-silica (NS), micro-silica (MS), metakaolin (MK) and rice husk ash (RHA) are used as fillers and their synergistic effect with RFP is studied. The effects of fillers and high-range water reducer (HRWR) on flowing ability of mortars are primarily determined by slump flow and V-funnel flow time tests. The results showed that for composites with a higher RGP content, the mortar flowing ability increased but tended to decrease when the composites containing 10% MK or 5% RHA. However, the flowing ability of samples incorporating 5% RGP and 10% SF or 25% FA showed an opposite result that their slump flow spread decreased and then increased with increasing RGP content. For specimens with 3% NS, the influence of RGP content on flowing properties was not significant. Except RHA and MS, the fillers studied in this paper could reduce the dosage of HRWR required for achieving the same followability. Also, the mixture parameters were determined and indicated that the flowability of mixtures was also affected by the content of sand and specific surface area of cement materials. It is believed that excess fine particles provided ball-bearing effect, which could facilitate the movement of coarse particles and alleviate the interlocking action among particles. Also, it can be concluded that using fillers in conjunction with RGP as cementitious materials can reduce the material costs of SCM significantly.

Predicting sorptivity and freeze-thaw resistance of self-compacting mortar by using deep learning and k-nearest neighbor

  • Turk, Kazim;Kina, Ceren;Tanyildizi, Harun
    • Computers and Concrete
    • /
    • v.30 no.2
    • /
    • pp.99-111
    • /
    • 2022
  • In this study, deep learning and k-Nearest Neighbor (kNN) models were used to estimate the sorptivity and freeze-thaw resistance of self-compacting mortars (SCMs) having binary and ternary blends of mineral admixtures. Twenty-five environment-friendly SCMs were designed as binary and ternary blends of fly ash (FA) and silica fume (SF) except for control mixture with only Portland cement (PC). The capillary water absorption and freeze-thaw resistance tests were conducted for 91 days. It was found that the use of SF with FA as ternary blends reduced sorptivity coefficient values compared to the use of FA as binary blends while the presence of FA with SF improved freeze-thaw resistance of SCMs with ternary blends. The input variables used the models for the estimation of sorptivity were defined as PC content, SF content, FA content, sand content, HRWRA, water/cementitious materials (W/C) and freeze-thaw cycles. The input variables used the models for the estimation of sorptivity were selected as PC content, SF content, FA content, sand content, HRWRA, W/C and predefined intervals of the sample in water. The deep learning and k-NN models estimated the durability factor of SCM with 94.43% and 92.55% accuracy and the sorptivity of SCM was estimated with 97.87% and 86.14% accuracy, respectively. This study found that deep learning model estimated the sorptivity and durability factor of SCMs having binary and ternary blends of mineral admixtures higher accuracy than k-NN model.

Axial compressive behavior of concrete-filled steel tube columns with stiffeners

  • Liang, Wei;Dong, Jiangfeng;Wang, Qingyuan
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.151-159
    • /
    • 2018
  • In order to reduce the deformation and delay the local buckling of concrete filled steel tube (CFST) columns, strengthening the structures with stiffeners is an effective method. In this paper, a new stiffening method with inclined stiffeners was used to investigate the behaviors of short CFST columns under axial compression. Besides, a three-dimensional nonlinear finite element (FE) model was applied to simulate the mechanical performances, including the total deformation, local buckling, and stress-strain relationship. Revised constitutive models of stiffened steel tube and confined concrete are proposed. A good agreement was achieved between the test and FE results. Furthermore, the calculated results of load capacity by using a simplified method also show a good correlation with experimental data.

Brief description of the Design and Construction of the Burj Dubai Project, Dubai, UAE.

  • Abdelrazaq Ahmad K.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.9-14
    • /
    • 2005
  • The Burj Dubai Project will be the tallest structure ever built by man; when completed the tower will be more than 700 meter tall and more than 160 floors. The early integration of aerodynamic shaping and wind engineering considerations played a major role in the architectural massing and design of this residential tower, where mitigating and taming the dynamic wind effects was one of the most important design criteria. This paper presents a brief overview of the structural system development and considerations of the tower and discusses the construction planning of the key structural components of the tower.

  • PDF

Box-Wilson Experimental Design-based Optimal Design Method of High Strength Self Compacting Concrete (Box-willson 실험계획법 기반 고강도 자기충전형 콘크리트의 최적설계방법)

  • Do, Jeong-Yun;Kim, Doo-Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.92-103
    • /
    • 2015
  • Box-Wilson experimental design method, known as central composite design, is the design of any information-gathering exercises where variation is present. This method was devised to gather as much data as possible in spite of the low design cost. This method was employed to model the effect of mixing factors on several performances of 60 MPa high strength self compacting concrete and to numerically calculate the optimal mix proportion. The nonlinear relations between factors and responses of HSSCC were approximated in the form of second order polynomial equation. In order to characterize five performances like compressive strength, passing ability, segregation resistance, manufacturing cost and density depending on five factors like water-binder ratio, cement content, fine aggregate percentage, fly ash content and superplasticizer content, the experiments were made at the total 52 experimental points composed of 32 factorial points, 10 axial points and 10 center points. The study results showed that Box-Wilson experimental design was really effective in designing the experiments and analyzing the relation between factor and response.

Modeling mechanical strength of self-compacting mortar containing nanoparticles using wavelet-based support vector machine

  • Khatibinia, Mohsen;Feizbakhsh, Abdosattar;Mohseni, Ehsan;Ranjbar, Malek Mohammad
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1065-1082
    • /
    • 2016
  • The main aim of this study is to predict the compressive and flexural strengths of self-compacting mortar (SCM) containing $nano-SiO_2$, $nano-Fe_2O_3$ and nano-CuO using wavelet-based weighted least squares-support vector machines (WLS-SVM) approach which is called WWLS-SVM. The WWLS-SVM regression model is a relatively new metamodel has been successfully introduced as an excellent machine learning algorithm to engineering problems and has yielded encouraging results. In order to achieve the aim of this study, first, the WLS-SVM and WWLS-SVM models are developed based on a database. In the database, nine variables which consist of cement, sand, NS, NF, NC, superplasticizer dosage, slump flow diameter and V-funnel flow time are considered as the input parameters of the models. The compressive and flexural strengths of SCM are also chosen as the output parameters of the models. Finally, a statistical analysis is performed to demonstrate the generality performance of the models for predicting the compressive and flexural strengths. The numerical results show that both of these metamodels have good performance in the desirable accuracy and applicability. Furthermore, by adopting these predicting metamodels, the considerable cost and time-consuming laboratory tests can be eliminated.

Optimum Mixture Proportion of Self-Compacting Concrete Considering Packing Factor of Aggregate and Fine Aggregate Volume Ratio (골재 채움율과 잔골재 용적비를 고려한 자기충전형 콘크리트의 최적배합)

  • 최연왕;정문영;정지승;문대중;안성일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.549-554
    • /
    • 2002
  • In Powder System, SCC demands high dosage of superplasticizer and a lage amout of powder for suitable fluidity and viscosity. Okamura's method of most representative mixing design method in SCC of Powder-System is unfavorable economically because of using a large amount of powder. In addition, many ready-mixed concrete plants do not use his mix design method and procedure due to complexity for practical application. Therefore, Nan Su proposed more simple mix design method than Okamura's. It had an advantage in simplicity in practical application and required a smaller amount of powders compared with Okamura's method. This paper proposed an optimal mixture proportion of SCC with consideration of Nan Su's method. The new and modified mix design method required a smaller amount of powder than that of Nan Su's. To check the properties of SCC, considered with the requirements specified by the Japanese Society of Civil Engineering.(JSCE)

  • PDF