• Title/Summary/Keyword: Self-attenuation correction

Search Result 3, Processing Time 0.017 seconds

Calculations of Radiation Measurement-Related Correction Factors (방사선 측정관련 보정인자 계산)

  • Shin, Hee-Sung;Ro, Seung-Gy;Kim, Ho-Dong
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.1
    • /
    • pp.19-24
    • /
    • 2003
  • The self-attenuation factor for an $^{198}Au$ sample and the 0.412 MeV gamma-ray penetration ratio in the circular Al-cover of the radiation detector have been determined using an analytical solution and MCNP code. The results show that the self-attenuation factors obtained from the analytical solution coincide with those of MCNP code for all but the Au sample with the relatively larger radius. Then the maximum difference between the two methods appears to be 9 % in the Au sample of 1.5 mm radius. It also is revealed that the analytical solutions of the 0.412 MeV gamma-ray penetration ratio in the Al-cover of 7.62 cm radius are consistent with those of the MCNP code within the standard deviation.

Calibration of cylindrical NaI(Tl) gamma-ray detector intended for truncated conical radioactive source

  • Badawi, Mohamed S.;Thabet, Abouzeid A.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1421-1430
    • /
    • 2022
  • The computation of the solid angle and the detector efficiency is considering to be one of the most important factors during the measuring process for the radioactivity, especially the cylindrical γ-ray NaI(Tl) detectors nowadays have applications in several fields such as industry, hazardous for health, the gamma-ray radiation detectors grow to be the main essential instruments in radiation protection sector. In the present work, a generic numerical simulation method (NSM) for calculating the efficiency of the γ-ray spectrometry setup is established. The formulas are suitable for any type of source-to-detector shape and can be valuable to determine the full-energy peak and the total efficiencies and P/T ratio of cylindrical γ-ray NaI(Tl) detector setup concerning the truncated conical radioactive source. This methodology is based on estimate the path length of γ-ray radiation inside the detector active medium, inside the source itself, and the self-attenuation correction factors, which typically use to correct the sample attenuation of the original geometry source. The calculations can be completed in general by using extra reasonable and complicate analytical and numerical techniques than the standard models; especially the effective solid angle, and the detector efficiency have to be calculated in case of the truncated conical radioactive source studied condition. Moreover, the (NSM) can be used for the straight calculations of the γ-ray detector efficiency after the computation of improvement that need in the case of γ-γ coincidence summing (CS). The (NSM) confirmation of the development created by the efficiency transfer method has been achieved by comparing the results of the measuring truncated conical radioactive source with certified nuclide activities with the γ-ray NaI(Tl) detector, and a good agreement was obtained after corrections of (CS). The methodology can be unlimited to find the theoretical efficiencies and modifications equivalent to any geometry by essential sufficiently the physical selective considered situation.