• Title/Summary/Keyword: Self-Excited

Search Result 254, Processing Time 0.03 seconds

Research on Numerical Calculation of Normal Modes in Nonlinear Vibrating Systems (비선형 진동계 정규모드의 수치적 계산 연구)

  • Lee, Kyoung-Hyun;Han, Hyung-Suk;Park, Sungho;Jeon, Soohong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.795-805
    • /
    • 2016
  • Nonlinear normal modes(NNMs) is a branch of periodic solution of nonlinear dynamic systems. Determination of stable periodic solution is very important in many engineering applications since the stable periodic solution can be an attractor of such nonlinear systems. Periodic solutions of nonlinear system are usually calculated by perturbation methods and numerical methods. In this study, numerical method is used in order to calculate the NNMs. Iteration of the solution is presented by multiple shooting method and continuation of solution is presented by pseudo-arclength continuation method. The stability of the NNMs is analyzed using Floquet multipliers, and bifurcation points are calculated using indirect method. Proposed analyses are applied to two nonlinear numerical models. In the first numerical model nonlinear spring-mass system is analyzed. In the second numerical model Jeffcott rotor system which has unstable equilibria is analyzed. Numerical simulation results show that the multiple shooting method can be applied to self excited system as well as the typical nonlinear system with stable equilibria.

Rotordynamic Forces Due to Rotor Sealing Gap in Turbines (비대칭 터빈 로터 실에 기인한 축 가진력)

  • Kim Woo June;Song Bum Ho;Song Seung Jin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.545-548
    • /
    • 2002
  • Turbines have been known to be particularly susceptible to flow-induced self-excited vibration. In such vibrations, direct damping and cross stiffness effects of aerodynamic forces determine rotordynamic stability. In axial turbines with eccentric shrouded rotors, the non-uniform sealing gap causes azimuthal non-uniformities in the seal gland pressure and the turbine torque which destabilize the rotor system. Previously, research efforts focused solely on either the seal flow or the unshrouded turbine passge flow. Recently, a model for flow in a turbine with a statically offset shrouded rotor has been developed and some stiffness predictions have been obtained. The model couples the seal flow to the passage flow and uses a small perturbation approach to determine nonaxiymmetric flow conditions. The model uses basic conservation laws. Input parameters include aerodynamic parameters (e.g. flow coefficient, reaction, and work coefficient); geometric parameters (e.g. sealing gap, depth of seal gland, seal pitch, annulus height); and a prescribed rotor offset. Thus, aerodynamic stiffness predictions have been obtained. However, aerodynamic damping (i.e. unsteady aerodynamic) effects caused by a whirling turbine has not yet been examined. Therefore, this paper presents a new unsteady model to predict the unsteady flow field due to a whirling shrouded rotor in turbines. From unsteady perturbations in velocity and pressure at various whirling frequencies, not only stiffness but also damping effects of aerodynamic forces can be obtained. Furthermore, relative contributions of seal gland pressure asymmetry and turbine torque asymmetry are presented.

  • PDF

Application of Sandwich Structure with Rigid Core for High Speed Machine Tool Bed (Rigid Core 샌드위치 구조의 초고속 공작기계 베드 적용에 관한 연구)

  • 서정도;이대길;김태형;박보선;최원선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.113-116
    • /
    • 2003
  • To maximize the productivity in machining molds and dies, machine tools should operate at high speeds. During the high speed operation of moving frames or spindles, vibration problems are apt to occur if the machine tool structures are made of conventional steel materials with inferior damping characteristics. However, self-excited vibration or chatter is bound to occur during high speed machining when cutting speed exceeds the stability limit of machine tool. Chatter is undesirable because of its adverse effect on surface finish, machining accuracy, and tool lift. Furthermore, chatter is a major cause of reducing production rate because, if no remedy can be found, metal removal rates have to be lowered until vibration-free performances is obtained. Also, the resonant vibration of machine tools frequently occurs when operating frequency approaches one of their natural frequencies because machine tools have several natural frequencies due to their many continuous structural elements. However, these vibration problems are closely related to damping characteristics of machine tool structures. This paper presents the use of polymer concrete and sandwich structures to overcome vibration problems. The polymer concrete has high potential for machine tool bed due to its good damping characteristics with moderate stiffness. In this study, a polymer concrete bed combined with welded steel structure i.e., a hybrid structure was designed and manufactured for a high-speed gantry-type milling. Also. its dynamic characteristics were measured by modal tests.

  • PDF

Modeling of a Dual Stator Induction Generator with and Without Cross Magnetic Saturation

  • Slimene, Marwa Ben;Khlifi, Mohamed Arbi;Fredj, Mouldi Ben;Rehaoulia, Habib
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.284-289
    • /
    • 2015
  • This paper discusses general methods of modelling magnetic saturation in steady-state, two-axis (d & q) frame models of dual stator induction generators (DSIG). In particular, the important role of the magnetic coupling between the d-q axes (cross-magnetizing phenomenon) is demonstrated, with and without cross-saturation. For that purpose, two distinct models of DSIGs, with and without cross-saturation, are specified. These two models are verified by an application that is sensitive to the presence of cross-saturation, to prove the validity of these final methods and the equivalence between all developed models. Advantages of some of the models over the existing ones and their applicability are discussed. In addition, an alternative is given to evaluate all saturation factors (static and dynamic) by just calculating the static magnetizing inductance which is simply the magnitude of the ratio of the magnetizing flux to the current. The comparison between the simulation results of the proposed model with experimental results gives a good correspondence, especially at startup.

A Combustion Instability Analysis of a Model Gas Turbine Combustor for Co-generation (열병합발전용 모델 가스터빈 연소기의 연소불안정 해석)

  • Cha, Dong-Jin;Shin, Dong-Myung
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1449-1457
    • /
    • 2009
  • Combustion instability is a major issue in design of co-generation gas turbine combustors for efficient operation with low emissions. Combustion instability is induced by the interaction of the unsteady heat release of the combustion process and the change in the acoustic pressure in the combustion chamber. In an effort to develop a technique to predict self-excited combustion instability of co-generation gas turbine combustors, a new stability analysis method based on the transfer matrix method is developed. The method views the combustion system as a one-dimensional acoustic system with a side branch and describes the heat source as the input to the system. This approach makes it possible to use not only the advantages of the transfer matrix method but also well established classic control theories. The approach is applied to a simple co-generation gas turbine combustion system, which shows the validity and effectiveness of the approach.

  • PDF

Study of central buckle effects on flutter of long-span suspension bridges

  • Han, Yan;Li, Kai;Cai, C.S.
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.403-418
    • /
    • 2020
  • To investigate the effects of central buckles on the dynamic behavior and flutter stability of long-span suspension bridges, four different connection options between the main cable and the girder near the mid-span position of the Aizhai Bridge were studied. Based on the flutter derivatives obtained from wind tunnel tests, formulations of self-excited forces in the time domain were obtained using a nonlinear least square fitting method and a time-domain flutter analysis was realized. Subsequently, the influences of the central buckles on the critical flutter velocity, flutter frequency, and three-dimensional flutter states of the bridge were investigated. The results show that the central buckles can significantly increase the frequency of the longitudinal floating mode of the bridge and have greater influence on the frequencies of the asymmetric lateral bending mode and asymmetric torsion mode than on that of the symmetric ones. As such, the central buckles have small impact on the critical flutter velocity due to that the flutter mode of the Aizhai Bridge was essentially the symmetric torsion mode coupled with the symmetric vertical mode. However, the central buckles have certain impact on the flutter mode and the three-dimensional flutter states of the bridge. In addition, it is found that the phenomenon of complex beat vibrations (called intermittent flutter phenomenon) appeared in the flutter state of the bridge when the structural damping is 0 or very low.

Design of Self Magnetization MsS Sensor Using Crossed Coils (Crossed-Coils를 이용한 자기자화 MsS센서의 설계)

  • Kim, Yi-Gon;Park, Kyung-Jo;Moon, Hong-Sik;Kim, Jae-Hyun;Ahn, Hyun-Jin;Kang, Woo-Seok;Oh, Un-Kyung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.205-208
    • /
    • 2008
  • This paper propose a advanced technique for exciting and receiving the guided torsional wave to detect flaws in pipe systems. There are some difficulties in selecting and exciting of modes by using the nickel strip attached on pipe systems, such as qualification of residual magnetic field and multi-exciting of the unwanted modes etc. In order to there difficulties we propose the new sensor, so called Crossed-coils sensor. We will prove that it is possible to select the modes to be excited and to find a optimal excitation condition for torsional mode by using the proposed sensor.

  • PDF

The Effect of Damping of a Two-degree-of-freedom Model for the Disc Brake Squeal Noise (2자유도계 모델을 이용한 디스크 브레이크 스퀼 소음에 대한 댐핑의 영향에 관한 연구)

  • Shin, Ki-Hong;Joe, Yong-Goo;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.903-910
    • /
    • 2003
  • A two-degree-of-freedom model is suggested to describe basic dynamical behaviors of the interaction between the pad and the disc of a disc brake system. Although a pad (and a disc) has many modes of vibration in practice, only one mode of each component Is considered. In this paper, a linear analysis is performed by means of the stability analysis to show various conditions for the system to become unstable, and is based on the assumption that the existence of limit cycle (this corresponds to an unstable equilibrium point inside the limit cycle) represents the squeal state of the disc brake system. The results of the stability analysis show that the damping of the disc is as much Important as that of the pad, whereas the damping of the pad only is considered In most practical situations.

Parametric Study for the Squeal Noise Reduction of an Automobile Water Pump (자동차용 워터펌프의 스퀼소음 저감을 위한 영향도분석)

  • Kim, B;Jung, W;Baek, H;Kang, D;Chung, J
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.492-497
    • /
    • 2013
  • In this study, a parametric study is performed to investigate the squeal noise of an automobile water pump. The squeal noise studied in this paper is generated by the self-excited torsional resonance of the rotating shaft, and this noise is related to the stick-slip phenomenon of the mechanical seal in the water pump. The mechanical seal friction has the characteristics of the negative velocity-gradient. The equations of motion of multiple-degree-of-freedom torsional vibration model is constructed by the Holzer's method and then the equation is transformed to an equivalent single-degree-of-freedom torsional resonance simulation model. A squeal noise criteria is determined by the simulation model to perform the parametric study. The design parameters(the mass moment of inertia of the pulley, the mass moment of inertia of the impeller, the length of the shafts, the radius of the shafts, spinning speed of the shafts, the position of the mechanical seal, radius of the mechanical seal, and normal load of the mechanical seal) are investigated to confirm the stability for the squeal noise.

  • PDF

A Study on Characteristics Improvement of Epoxy Resin Mold Using Metal Fillers and Its Application (금속 보강재를 이용한 에폭시 수지형의 특성 향상 및 적용에 관한 연구)

  • ;;;;Nakagawa Takeo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.165-173
    • /
    • 2003
  • As the cycling time of new products have become more and more short in recent years, the demand for lowering the cost and reducing the production time becomes stronger. In order for the demand, the rapid prototyping and rapid tooling technology have been used. It has been widely known that RP technology has advantages with fabricating 3-D object having a complicated geometric shape. RP products, however, have a limitation with applying to the real die and mold because soft materials such as resin, paper and wax has been mostly used in RP technology. So in this paper, the RP products have been copied to semi-metallic soft tools using the mixture of metal fillers and epoxy resin. In order to evaluate the effect of the fillers on the characteristics of semi-metallic soft tools, three fillers are used including commercial aluminum powder, cast iron powder recycled by machining chips, and aluminum short fiber made by self-excited vibration technique. Besides, in the case of aluminum powder, the change of characteristics of semi-metallic soft tools is also tested according to the volume fraction of the powder.