• Title/Summary/Keyword: Self-Alignment

Search Result 145, Processing Time 0.028 seconds

PDMS기판에 이온빔 처리에 따른 수평 액정의 배향 연구

  • Kim, Yeong-Hwan;O, Byeong-Yun;Kim, Byeong-Yong;Lee, Won-Gyu;Im, Ji-Hun;Na, Hyeon-Jae;Seo, Dae-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.159-159
    • /
    • 2009
  • We characterize a flexible self-assembled liquid crystal display (LCD) fabricated from a polyimide (PI) alignment layer with polydimethylsiloxane pixel walls. Ion beam (IB) irradiation aligned LC molecules in the PI layer and bonded two flexible plastic substrates in a one-step assembly of the pixel walls. X-ray photoelectron spectroscopic analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy provided chemical and physical evidence for the formation of stable chemical bonds between the PI layer and the PDMS pixel walls in addition to the important maintenance of a uniform 6 um gap between the two substrates without the use of any epoxy resins or other polymers.

  • PDF

SIMULATING NONTHERMAL RADIATION FROM CLUSTER RADIO GALAXIES

  • TREGILLIS I. L.;JONES T. W.;RYU DONGSU
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.509-515
    • /
    • 2004
  • We present results from an extensive synthetic observation analysis of numerically-simulated radio galaxy (RG) jets. This analysis is based on the first three-dimensional simulations to treat cosmic ray acceleration and transport self-consistently within a magnetohydrodynamical calculation. We use standard observational techniques to calculate both minimum-energy and inverse-Compton field values for our simulated objects. The latter technique provides meaningful information about the field. Minimum-energy calculations retrieve reasonable field estimates in regions physically close to the minimum-energy partitioning, though the technique is highly susceptible to deviations from the underlying assumptions. We also study the reliability of published rotation measure analysis techniques. We find that gradient alignment statistics accurately reflect the physical situation, and can uncover otherwise hidden information about the source. Furthermore, correlations between rotation measure (RM) and position angle (PA) can be significant even when the RM is completely dominated by an external cluster medium.

A Robust Real-Time Mobile Robot Self-Localization with ICP Algorithm

  • Sa, In-Kyu;Baek, Seung-Min;Kuc, Tae-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2301-2306
    • /
    • 2005
  • Even if there are lots of researches on localization using 2D range finder in static environment, very few researches have been reported for robust real-time localization of mobile robot in uncertain and dynamic environment. In this paper, we present a new localization method based on ICP(Iterative Closest Point) algorithm for navigation of mobile robot under dynamic or uncertain environment. The ICP method is widely used for geometric alignment of three-dimensional models when an initial estimate of the relative pose is known. We use the method to align global map with 2D scanned data from range finder. The proposed algorithm accelerates the processing time by uniformly sampling the line fitted data from world map of mobile robot. A data filtering method is also used for threshold of occluded data from the range finder sensor. The effectiveness of the proposed method has been demonstrated through computer simulation and experiment in an office environment.

  • PDF

Process Optimization for High Frequency Performance of InP-Based Heterojunction Bipolar Transistors

  • Song, Yongjoo;Jeong, Yongsik;Yang, Kyounghoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.1
    • /
    • pp.33-41
    • /
    • 2003
  • In this work, process optimization techniques for high frequency performance of HBTs are presented. The techniques are focused on reducing parasitic base resistance and base-collector capacitance, which are key elements determining the high frequency characteristics of HBTs. Several fabrication techniques, which can significantly reduce the parasitic elements of the HBTs for improved high frequency performance, are proposed and verified by the measured data of the fabricated devices.

A NUMERICAL STUDY ON A THIN FILM MANUFACTURING PROCESS USING THE CONTROL OF SURFACE ENERGY OF A MICRODROPLET (미세액적의 표면에너지 제어를 통한 박막 제조 공정에 대한 연구)

  • Suh, Y.;Son, G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.221-226
    • /
    • 2008
  • Numerical simulation is performed for microdroplet deposition on a pre-patterned micro-structure. The level-set method for tracking the liquid-gas interface is extended to treat the immersed (or irregular-shaped) solid surface. The no-slip condition at the fluid-solid interface as well as the matching conditions at the liquid-gas interface is accurately imposed by incorporating the ghost fluid approach based on a sharp-interface representation. The method is further extended to treat the contact angle condition at an immersed solid surface. The present computation of a patterning process using microdroplet ejection demonstrates that the multiphase characteristics between the liquid-gas-solid phases can be used to improve the patterning accuracy.

  • PDF

A NUMERICAL STUDY ON A THIN FILM MANUFACTURING PROCESS USING THE CONTROL OF SURFACE ENERGY OF A MICRODROPLET (미세액적의 표면에너지 제어를 통한 박막 제조 공정에 대한 연구)

  • Suh, Y.;Son, G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.221-226
    • /
    • 2008
  • Numerical simulation is performed for microdroplet deposition on a pre-patterned micro-structure. The level-set method for tracking the liquid-gas interface is extended to treat the immersed (or irregular-shaped) solid surface. The no-slip condition at the fluid-solid interface as well as the matching conditions at the liquid-gas interface is accurately imposed by incorporating the ghost fluid approach based on a sharp-interface representation. The method is further extended to treat the contact angle condition at an immersed solid surface. The present computation of a patterning process using microdroplet ejection demonstrates that the multiphase characteristics between the liquid-gas-solid phases can be used to improve the patterning accuracy.

  • PDF

Processing Control of 0402 Chip used Pb-free Solder in SMT process (무연솔더 적용한 0402 칩의 공정제어)

  • Bang, Jeong-Hwan;Lee, Chang-U;Lee, Jong-Hyeon;Kim, Jeong-Han;Nam, Won-U
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.218-221
    • /
    • 2007
  • The surface mounting technology of 0402 electric chip part is necessary to fabricate a high density and multi-functional module, but there is a limitation of the technology, like as a bridge and self-alignement. This work estimated SMT processing factors of 0402 chip. To obtain optimum SMT process, we evaluated effects of stencil thickness, shape of hole on printability and mountability. Printability shows best results under the thickness of $80{mu}m$ with circle hole shape and 90% square hole shape. In case of chip mounting process, chip mis-alignment and bridge was occurred rarely in same conditions. In more thin stencil thickness, $50{mu}m$, strength of 1005 chip parts was poor, because of amount of printed solder was insufficient.

  • PDF

All-Organic Nanowire Field-Effect Transistors and Complementary Inverters Fabricated by Direct Printing

  • Park, Gyeong-Seon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.632-632
    • /
    • 2013
  • We generated single-crystal organic nanowire arrays using a direct printing method (liquidbridge- mediated nanotransfer molding) that enables the simultaneous synthesis, alignment and patterning of nanowires from molecular ink solutions. Using this method, single-crystal organic nanowires can easily be synthesized by self-assembly and crystallization of organic molecules within the nanoscale channels of molds, and these nanowires can then be directly transferred to specific positions on substrates to generate nanowire arrays by a direct printing process. The position of the nanowires on complex structures is easy to adjust, because the mold is movable on the substrates before the polar liquid layer, which acts as an adhesive lubricant, is dried. Repeated application of the direct printing process can be used to produce organic nanowire-integrated electronics with twoor three-dimensional complex structures on large-area flexible substrates. This efficient manufacturing method is used to fabricate all-organic nanowire field-effect transistors that are integrated into device arrays and inverters on flexible plastic substrates.

  • PDF

Estimation Technique of Fixed Sensor Errors for SDINS Calibration

  • Lee, Tae-Gyoo;Sung, Chang-Ky
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.536-541
    • /
    • 2004
  • It is important to estimate and calibrate sensor errors in maintaining the performance level of SDINS. In this study, an estimation technique of fixed sensor errors for SDINS calibration is discussed. First, the fixed errors of gyros and accelerometers, excluding gyro biases are estimated by the navigation information of SDINS in multi-position. The SDINS with RLG includes flexure errors. In this study, the gyros flexures are out of consideration, but the proposed procedure selects certain positions and rotations in order to minimize the influence of flexures. Secondly, the influences of random walks, flexures and orientation errors are verified via numerical simulations. Thirdly, applying the previous estimated errors to SDINS, the estimation of gyro biases is conducted via the additional control signals of close-loop self-alignment. Lastly, the experiments illustrate that the extracted calibration parameters are available for the improvement of SDINS.