• Title/Summary/Keyword: Self assembled quantum dot

Search Result 25, Processing Time 0.019 seconds

Temperature-dependent Morphology of Self-assembled InAs Quantum Dots Grown on Si Substrates (Si 기판 위에 형성된 InAs 양자점의 열처리에 의한 표면 상태의 변화)

  • Yoo, Choong-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.864-868
    • /
    • 2007
  • Effect of high-temperature annealing on morphology of fully coherent self-assembled InAs quantum dots' grown on Si (100) substrates at $450^{\circ}C$ by atmospheric pressure metalorganic chemical vapor deposition(APMOCVD) was investigated by atomic force microscopy(AFM). When the dots were annealed at 500 - 600$^{\circ}C$ for 15 sec - 60 min, there was no appreciable change in the dot density but the heights of the dots increased along with the reduction in the diameters. In segregation from the InAs quantum dots and/or from the 2-dimensional InAs wetting layer which was not transformed into quantum dots looked responsible for this change in the dot size. However the change rates remained almost same regardless of annealing time and temperature, which may indicate that the morphological change due to thermal annealing is done instantly when the dots are exposed to high temperature annealing.

Improved charge balance in quantum dot light-emitting diodes using self-assembled monolayer (자기조립단분자막을 이용한 양자점 발광다이오드의 전하 균형도 개선)

  • Sangwook Park;Woon Ho Jung;Yeyun Bae;Jaehoon Lim;Jeongkyun Roh
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.30-37
    • /
    • 2023
  • To improve the efficiency and stability of colloidal quantum dot light-emitting diodes (QD-LEDs), it is essential to achieve charge balance within the QD emissive layer. Zinc oxide (ZnO) is widely used for constructing an electron transport layer in the state-of-the-art QD-LEDs, but spontaneous electron injection from ZnO often results in excessive electrons in QDs that significantly deteriorate the performance of QD-LEDs. In this study, we demonstrated the improved performance of QD-LEDs by modifying the electron injection property of ZnO with self-assembled monolayer (SAM)-treatment. As a result of improved charge balance, the external quantum efficiency and maximum luminance of QD-LEDs with SAM-treatment were improved by 25% and 200%, respectively, compared to the devices without SAM-treatment.

Epitaxy of Self-assembled InAs Quantum Dots on Si Substrates by Atmospheric Pressure Metalorganic Chemical Vapor Deposition (대기압 MOCVD 시스템을 이용하여 Si 기판 위에 자발적으로 형성된 InAs 양자점에 대한 연구)

  • Yoo, Choong-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.527-531
    • /
    • 2005
  • Fully coherent self-assembled InAs quantum dots(QDs) grown on Si (100) substrates by atmospheric pressure metalorganic chemical vapor deposition(APMOCVD) were grown and the effect of growth conditions such as growth rate and growth time on quantum dots' morphology such as densities and sizes was investigated. InAs QDs of 30 - 80 nm in diameters with densities in the range of (0.6 - 1.7) x $10^{10}\;cm^{-2}$ were achieved on Si substrates and InAs layer was changed from 2 dimensional growth to 3 dimensional one at a nominal thickness less than 0.48 ML. This is attributed to the higher ambient pressure of APMOCVD suppressing of In segregation from the 2 dimensional InAs layer. This In segregation looked to disturb the dot formation especially when the growth rate was low so that the dots became less dense and bigger as the growth rate was lower.

Structural and Optical Properties of Self-assembled InAs Quantum Dots as a Function of Rapid Thermal Annealing Temperature (급속 열처리 온도에 따른 자발 형성된 InAs 양자점의 구조 및 광학 특성)

  • Cho, Shin-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.3
    • /
    • pp.183-187
    • /
    • 2006
  • We present the effects of rapid thermal annealing (RTA) temperature on the structural and optical properties of self-assembled InAs quantum dot (QD) structures grown on GaAs substrates by molecular beam epitaxy (MBE). The photoluminescence (PL) measurements are performed in a closed-cycle refrigerator as a function of temperature for the unannealed and annealed samples. RTA at higher temperature results in the increase in island size, the corresponding decrease in the density of islands, and the redshift in the PL emission from the islands. The temperature dependence of the PL peak energy for the InAs QDs is well expressed by the Varshni equation. The thermal quenching activation energies for the samples unannealed and annealed at $600^{\circ}C$ are found to be $25{\pm}5meV$ and $47{\pm}5$ meV, respectively.

TEM Study on the Growth Characteristics of Self-Assembled InAs/GaAs Quantum Dots

  • Kim, Hyung-Seok;Suh, Ju-Hyung;Park, Chan-Gyung;Lee, Sang-Jun;Noh, Sam-Gyu;Song, Jin-Dong;Park, Yong-Ju;Lee, Jung-Il
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.35-40
    • /
    • 2006
  • Self-assembled InAs/GaAs quantum dots (QDs) were grown by the atomic layer epitaxy (ALE) and molecular beam epitaxy (MBE) techniques, The structure and the thermal stability of QDs have been studied by high resolution electron microscopy with in-situ heating experiment capability, The ALE and MBE QDs were found to form a hemispherical structure with side facets in the early stage of growth, Upon capping by GaAs layer, however, the apex of QDs changed to a flat one. The ALE QDs have larger size and more regular shape than those of MBE QDs. The QDs collapse due to elevated temperature was observed directly in atomic scale, In situ heating experiment within TEM revealed that the uncapped QDs remained stable up to $580^{\circ}C$, However, at temperature above $600^{\circ}C$, the QDs collapsed due to the diffusion and evaporation of In and As from the QDs, The density of the QDs decreased abruptly by this collapse and most of them disappeared at above $600^{\circ}C$.

Controlling the emission wavelength of self-assembled InAs quantum dots (자발형성 InAs 양자점의 발광파장 변조)

  • 김진수;이진홍;홍성의;곽호상;한원석;김종희;오대곤
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.152-153
    • /
    • 2003
  • 최근 양자점 (Quantum Dot-QD)에 대한 관심이 기초 물리학뿐만 아니라 광전소자 응용 측면에서 많은 주목을 끌고 있다. 특히, 자발 형성방법으로 성장시킨 양자점 (Self-assembled QD)을 이용하여 Laser Diode와 같은 광소자에 응용한 결과가 발표되고 있다. 이러한 자발형성 방법으로 성장한 양자점을 광통신에 응용하기 위해서는 발광파장을 제어할 필요성이 있다. 따라서 본 연구에서는 단거리 광통신에 응용 될 수 있는 1.3 $\mu$m 영역과 장거리 광통신에 사용하는 1.55 $\mu$m 영역으로 InAs 양자점의 발광 파장을 변조한 결과에 대하여 분석하였다. (중략)

  • PDF

Optical Properties of Self-assembled InAs Quantum Dots with Bimodal Site Distribution (이중 크기분포를 가지는 자발형성 InAs 양자점의 광특성 평가)

  • Jung, S.I.;Yeo, H.Y.;Yun, I.;Han, I.K.;Lee, J.I.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.3
    • /
    • pp.308-313
    • /
    • 2006
  • We report a photoluminescence (PL) study on the growth process of self-assembled InAs quantum dots (QDs) under the various growth conditions. Distinctive double-peak feature was observed in the PL spectra of the QD samples grown at the relatively high substrate temperature. From the excitation power-dependent PL and the temperature-dependent PL measurements, the double-peak feature is associated with the ground state transitions from InAs QDs with two different size branches. In addition, the variation in the bimodal size distribution of the QD ensembles with different InAs coverage is demonstrated.

Effect of Si Doping in Self-Assembled InAs Quantum Dots on Infrared Photodetector Properties (Si 도핑이 InAs 자기조립 양자점 적외선 소자 특성에 미치는 효과)

  • Seo, Dong-Bum;Hwang, Je-hwan;Oh, Boram;Kim, Jun Oh;Lee, Sang Jun;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.542-546
    • /
    • 2019
  • We investigate the characteristics of self-assembled quantum dot infrared photodetectors(QDIPs) based on doping level. Two kinds of QDIP samples are prepared using molecular beam epitaxy : $n^+-i(QD)-n^+$ QDIP with undoped quantum dot(QD) active region and $n^+-n^-(QD)-n^+$ QDIP containing Si direct doped QDs. InAs QDIPs were grown on semi-insulating GaAs (100) wafers by molecular-beam epitaxy. Both top and bottom contact GaAs layer are Si doped at $2{\times}10^{18}/cm^3$. The QD layers are grown by two-monolayer of InAs deposition and capped by InGaAs layer. For the $n^+-n^-(QD)-n^+$ structure, Si dopant is directly doped in InAs QD at $2{\times}10^{17}/cm^3$. Undoped and doped QDIPs show a photoresponse peak at about $8.3{\mu}m$, ranging from $6{\sim}10{\mu}m$ at 10 K. The intensity of the doped QDIP photoresponse is higher than that of the undoped QDIP on same temperature. Undoped QDIP yields a photoresponse of up to 50 K, whereas doped QDIP has a response of up to 30 K only. This result suggests that the doping level of QDs should be appropriately determined by compromising between photoresponsivity and operating temperature.