DOI QR코드

DOI QR Code

Improved charge balance in quantum dot light-emitting diodes using self-assembled monolayer

자기조립단분자막을 이용한 양자점 발광다이오드의 전하 균형도 개선

  • Sangwook Park (Dept. of Electrical Engineering, Pusan National University) ;
  • Woon Ho Jung (Dept. of Energy Science, Centre for Artificial Atoms, Sungkyunkwan University (SKKU)) ;
  • Yeyun Bae (Dept. of Electrical Engineering, Pusan National University) ;
  • Jaehoon Lim (Dept. of Energy Science, Centre for Artificial Atoms, Sungkyunkwan University (SKKU)) ;
  • Jeongkyun Roh (Dept. of Electrical Engineering, Pusan National University)
  • Received : 2023.01.28
  • Accepted : 2023.02.16
  • Published : 2023.03.31

Abstract

To improve the efficiency and stability of colloidal quantum dot light-emitting diodes (QD-LEDs), it is essential to achieve charge balance within the QD emissive layer. Zinc oxide (ZnO) is widely used for constructing an electron transport layer in the state-of-the-art QD-LEDs, but spontaneous electron injection from ZnO often results in excessive electrons in QDs that significantly deteriorate the performance of QD-LEDs. In this study, we demonstrated the improved performance of QD-LEDs by modifying the electron injection property of ZnO with self-assembled monolayer (SAM)-treatment. As a result of improved charge balance, the external quantum efficiency and maximum luminance of QD-LEDs with SAM-treatment were improved by 25% and 200%, respectively, compared to the devices without SAM-treatment.

양자점 발광 다이오드(QD-LED)의 효율과 안정성 향상을 위해서 QD 발광층에 주입되는 전하의 균형을 이루는 것은 필수이다. 산화 아연(ZnO)은 최신 QD-LED에서 전자수송층(electron transport layer, ETL)을 구성하기 위해 가장 많이 사용되고 있으나, ZnO의 자발적인 전자 주입은 QD-LED의 성능을 크게 열화시키는 과도한 전자 주입을 유발한다. 본 연구에서는 자기조립단분자막(self-assembled monolayer, SAM) 처리를 통해 ZnO의 전자 주입 특성을 조절하여 QD-LED의 성능을 향상시켰다. 전하 균형도를 향상시킨 결과, SAM을 처리한 QD-LED는 SAM을 처리 안한 소자와 비교하여 내부 양자 효율(external quantum efficiency, EQE)이 25%, 최대 휘도는 200% 향상되었다.

Keywords

Acknowledgement

This work was supported by a 2-Year Research Grant of Pusan National University

References

  1. C. B. Murray, D. J. Norris, and M. G. Bawendi, "Synthesis and characterization of nearly monodisperse CdE(E = sulfur, selenium, tellurium) semiconductor nanocrystallites," J. Am. Chem. Soc., Vol.115, No.19, pp.8706-8715, 1993. DOI: 10.1021/ja00072a025
  2. X. Peng, "An essay on synthetic chemistry of colloidal nanocrystals," Nano Res., Vol.2, No.6, pp.425-447, 2009. DOI: 10.1007/s12274-009-9047-2
  3. W. K. Bae, S. Brovelli and V. I. Klimov, "Spectroscopic insights into the performance of quantum dot light-emitting diodes," MRS Bull., Vol.38, No.9, pp.721-730, 2013. DOI: 10.1557/mrs.2013.182
  4. J. M. Pietryga, Y.-S. Park, J. Lim, A. F. Fidler, W. K. Bae, S. Brovelli, and V. I. Klimov, "Spectroscopic and device aspects of nanocrystal quantum dots," Chem. Rev., Vol.116, No.18, pp.10513-10622, 2016. DOI: 10.1021/acs.chemrev.6b00169
  5. M. Park, J. Roh, J. Lim, H. Lee, and D. Lee, "Double Metal Oxide Electron Transport Layers for Colloidal Quantum Dot Light-Emitting Diodes," Nanomaterials, Vol.10, No.4, p.726, 2020. DOI: 10.3390/nano10040726
  6. J. Roh, Y.-S. Park, J. Lim and V. I. Klimov, "Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity," Nat. Commun., Vol.11, No.1, p.271, 2020. DOI: 10.1038/s41467-019-14014-3
  7. H. Yu, D. Kim, J. Lee, S. Baek, J. Lee, R. Singh, and F. So, "High-gain infrared-to-visible upconversion light-emitting phototransistors," Nat. Photonics, Vol.10, No.2, pp.129-134, 2016. DOI: 10.1038/s41467-019-14014-3
  8. G. Shi, H. Wang, Y. Zhang, C. Cheng, T. Zhai, B. Chen, X. Liu, R. Jono, X. Mao, Y. Liu, X. Zhang, X. Ling, Y. Zhang, X. Meng, Y. Chen, S. Duhm, L. Zhang, T. Li, L. Wang, S. Xiong, T. Sagawa, T. Kubo, H. Segawa, Q. Shen, Z. Liu, and W. Ma, "The effect of water on colloidal quantum dot solar cells," Nat. Commun., Vol.12, No.1, p.4381,
  9. W. K. Bae, Y.-S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, "Controlling the influence of auger recombination on the performance of quantum-dot light-emitting diodes," Nature Communications, Vol.4, No.1, 2013.
  10. J. H. Chang, P. Park, H. Jung, B. G. Jeong, D. Hahm, G. Nagamine, J. Ko, J. Cho, L. A. Padilha, D. C. Lee, C. Lee, K. Char, and W. K. Bae, "Unraveling the origin of operational instability of quantum dot based light-emitting diodes," ACS Nano, Vol.12, No.10, pp.10231-10239, 2018. DOI: 10.1021/acsnano.8b03386
  11. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, "Solution-processed, high-performance light-emitting diodes based on quantum dots," Nature, Vol.515, No.7525, pp.96-99, 2014. https://doi.org/10.1038/nature13829
  12. H. Jin, H. Moon, W. Lee, H. Hwangbo, S. H. Yong, H. K. Chung, and H. Chae, "Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers," RSC Adv., Vol.9, No.21, pp. 11634-11640, 2019. DOI: 10.1039/C9RA00145J
  13. Z. Zhang, Y. Ye, C. Pu, Y. Deng, X. Dai, X. Chen, D. Chen, X. Zheng, Y. Gao, and W. Fang, "High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots," Adv. Mater., Vol.30, No.28, pp.1801387, 2018. DOI: 10.1002/adma.201801387
  14. J. Lim, Y.-S. Park, K. Wu, H. J. Yun and V. I. Klimov, "Droop-free colloidal quantum dot light-emitting diodes," Nano Lett., Vol.18, No.10, pp.6645-6653, 2018. DOI: 10.1021/acs.nanolett.8b03457
  15. J. Lin, X. Dai, X. Liang, D. Chen, X. Zheng, Y. Li, Y. Deng, H. Du, Y. Ye, D. Chen, C. Lin, L. Ma, Q. Bao, H. Zhang, L. Wang, X. Peng, and Y. Jin, "High-performance quantum-dot light-emitting diodes using NIO x hole-injection layers with a high and stable work function," Advanced Functional Materials, Vol.30, No.5, p.1907265, 2019. DOI: 10.1002/adfm.201907265
  16. L. Li, Y. Luo, Q. Wu, L. Wang, G. Jia, T. Chen, C. Zhang, and X. Yang, "Efficient and bright green INP quantum dot light-emitting diodes enabled by a self-assembled dipole interface monolayer," Nanoscale, Vol.15, No.6, pp.2837-2842, 2023. https://doi.org/10.1039/D2NR06618A
  17. L. Z. Borg, D. Lee, J. Lim, W. K. Bae, M. Park, S. Lee, C. Lee, K. Char, and R. Zentel, "The effect of band gap alignment on the hole transport from semiconducting block copolymers to quantum dots," J. Mater. Chem. C, Vol.1, No.9, p.1722, 2013.
  18. Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter and A. J. Heeger, "Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer," Adv. Mater., Vol.23, No.14, pp.1679-1683, 2011. DOI: 10.1002/adma.201004301
  19. J. Xu, L. Wang, X. Zhao, Y. Shi, Y. Shi and T. Liu, "High-Performance Blue Quantum Dot Light Emitting Diode via Solvent Optimization Strategy for ZnO Nanoparticles," Nanomaterials, Vol.11, No.4, p.959, 2021. DOI: 10.3390/nano11040959
  20. D. K. Schwartz, "Mechanisms and kinetics of self-assembled monolayer formation," Annu. Rev. Phys. Chem., Vol.52, p.107, 2001. DOI: 10.1146/annurev.physchem.52.1.107