• Title/Summary/Keyword: Self Learning Fuzzy Control Algorithm

Search Result 41, Processing Time 0.023 seconds

Fuzzy-Sliding Mode Control of Polishing Robot Based on Genetic Algorithm

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.173-176
    • /
    • 1999
  • This paper shows a self tuning fuzzy inference method by the genetic algorithm in the fuzzy-sliding mode control for a Polishing robot. Using this method, the number of inference rules and the shape of membership functions are determined by the genetic algorithm. The fuzzy outputs of the consequent part are derived by the gradient descent method. Also, it is guaranteed that .the selected solution become the global optimal solution by optimizing the Akaike's information criterion expressing the quality of the inference rules. It is shown by simulations that the method of fuzzy inference by the genetic algorithm provides better learning capability than the trial and error method.

  • PDF

A Study on the Fuzzy Learning Control of the Acrobatic Robot (곡예 로보트의 퍼지학습제어에 관한 연구)

  • 김도현;오준호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2567-2576
    • /
    • 1994
  • In this paper we propose a new method to determine the learning rates of fuzzy learning algorithm(FLA) in nonlinear MIMO system. The state feedback gains are used from the linearized system of the nonlinear MIMO system. Through this method, it is easy to determine the learing rates. And it is quarauteed the good convergence and confirmed the performance of FLA is better than that of linear controller(LC) through the simulation. Acrobatic robot system is selected as an example(one-input two-output system), and FLA is implemented through the experiment.

A study on Induction Motor Servo System using Self-learning Neural-Fuzzy Networks (자기학습형 뉴럴-퍼지 제어기에 의한 유도전동기 서어보시스템)

  • Yang, Seung-Ho;Kim, Se-Chan;Won, Chung-Yuen;Kim, Duk-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.142-144
    • /
    • 1993
  • In this study, a Self-learning Neural-Fuzzy Networks is presented, Because of the fuzzy controller property, the designing problems of fuzzy if-then rules, membership functions and inference methods are very complex task. Thus in this paper we proposed the Neural-Fuzzy Networks composed by Sugeno and Takagi's fuzzy inference method and learned by using temporal back propagation algorithm. The proposed method can refine automatically the fuzzy if-then rules without human expert's knowledges. The induction motor servo system is used to demonstrate the effectiveness of the proposed control scheme and the feasibility of the acquired fuzzy controller. All results are supported by simulation.

  • PDF

GA-BASED PID AND FUZZY LOGIC CONTROL FOR ACTIVE VEHICLE SUSPENSION SYSTEM

  • Feng, J.-Z.;Li, J.;Yu, F.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.181-191
    • /
    • 2003
  • Since the nonlinearity and uncertainties which inherently exist in vehicle system need to be considered in active suspension control law design, this paper proposes a new control strategy for active vehicle suspension systems by using a combined control scheme, i.e., respectively using a genetic algorithm (GA) based self-tuning PID controller and a fuzzy logic controller in two loops. In the control scheme, the PID controller is used to minimize vehicle body vertical acceleration, the fuzzy logic controller is to minimize pitch acceleration and meanwhile to attenuate vehicle body vertical acceleration further by tuning weighting factors. In order to improve the adaptability to the changes of plant parameters, based on the defined objectives, a genetic algorithm is introduced to tune the parameters of PID controller, the scaling factors, the gain values and the membership functions of fuzzy logic controller on-line. Taking a four degree-of-freedom nonlinear vehicle model as example, the proposed control scheme is applied and the simulations are carried out in different road disturbance input conditions. Simulation results show that the present control scheme is very effective in reducing peak values of vehicle body accelerations, especially within the most sensitive frequency range of human response, and in attenuating the excessive dynamic tire load to enhance road holding performance. The stability and adaptability are also showed even when the system is subject to severe road conditions, such as a pothole, an obstacle or a step input. Compared with conventional passive suspensions and the active vehicle suspension systems by using, e.g., linear fuzzy logic control, the combined PID and fuzzy control without parameters self-tuning, the new proposed control system with GA-based self-learning ability can improve vehicle ride comfort performance significantly and offer better system robustness.

A Study on the High Performance Speed Control of Induction Motor Using Self-Learning Fuzzy Controller (자기학습형 퍼지제어기에 의한 유도전동기 고성능 속도제어에 관한 연구)

  • Park, Y.M.;Kim, Y.C.;Kim, J.M.;Won, C.Y.;Kim, Y.R.;Kim, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.505-508
    • /
    • 1997
  • In this paper, an auto-tuning method for fuzzy controller based on the neural network is presented. The backpropagated error of neural emulator offers the path which reforms the fuzzy controller's membership functions and fuzzy rule, and used for speed control of induction motor. For the torque control method, an indirect vector control scheme with slip calculation is used because of its stable characteristics regardless of speed. Motor input current is regulated by a current controlled voltage source PWM inverter using space voltage vector technique. Also, the scheme of current control fuzzy controller is synchronous reference frame with decoupling term. DSP(TMS320C31) is used to achieve the high speed calculation of the space voltage vector PWM and to build the self-learning fuzz. control algorithm. An IPM is used to simplify hardware design.

  • PDF

A Study of Position Control Performance Enhancement in a Real-Time OS Based Laparoscopic Surgery Robot Using Intelligent Fuzzy PID Control Algorithm (Intelligent Fuzzy PID 제어 알고리즘을 이용한 실시간 OS 기반 복강경 수술 로봇의 위치 제어 성능 강화에 관한 연구)

  • Song, Seung-Joon;Park, Jun-Woo;Shin, Jung-Wook;Lee, Duck-Hee;Kim, Yun-Ho;Choi, Jae-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.518-526
    • /
    • 2008
  • The fuzzy self-tuning PID controller is a PID controller with a fuzzy logic mechanism for tuning its gains on-line. In this structure, the proportional, integral and derivative gains are tuned on-line with respect to the change of the output of system under control. This paper deals with two types of fuzzy self-tuning PID controllers, rule-based fuzzy PID controller and learning fuzzy PID controller. As a medical application of fuzzy PID controller, the proposed controllers were implemented and evaluated in a laparoscopic surgery robot system. The proposed fuzzy PID structures maintain similar performance as conventional PID controller, and enhance the position tracking performance over wide range of varying input. For precise approximation, the fuzzy PID controller was realized using the linear reasoning method, a type of product-sum-gravity method. The proposed controllers were compared with conventional PID controller without fuzzy gain tuning and was proved to have better performance in the experiment.

Self Learning Fuzzy Sliding Mode Controller for Nonlinear System

  • Seo, Sam-Jun;Kim, Dong-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.103.1-103
    • /
    • 2002
  • In variable structure control algorithms, The control law used to realized the desired sliding mode dynamics is discontinuous on the switching manifold. However, due to imperfections in switching, such as time delays, the system trajectory chatters instead of sliding along the switching manifold. This chattering is undesirable because it may excite unmodeled high frequency dynamics in the physical system. In this paper, to overcome this drawback a self-organizing fuzzy sliding mode control algorithm using gradient descent method is proposed. The proposed method has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of disturbance, parameter variations and uncertainties ill the sliding mode. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum system. The results show that both alleviation of chattering and performance are achieved.

  • PDF

Fuzzy neural network modeling using hyper elliptic gaussian membership functions (초타원 가우시안 소속함수를 사용한 퍼지신경망 모델링)

  • 권오국;주영훈;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.442-445
    • /
    • 1997
  • We present a hybrid self-tuning method of fuzzy inference systems with hyper elliptic Gaussian membership functions using genetic algorithm(GA) and back-propagation algorithm. The proposed self-tuning method has two phases : one is the coarse tuning process based on GA and the other is the fine tuning process based on back-propagation. But the parameters which is obtained by a GA are near optimal solutions. In order to solve the problem in GA applications, it uses a back-propagation algorithm, which is one of learning algorithms in neural networks, to finely tune the parameters obtained by a GA. We provide Box-Jenkins time series to evaluate the advantage and effectiveness of the proposed approach and compare with the conventional method.

  • PDF

Path Planning of Autonomous Guided Vehicle Using fuzzy Control & Genetic Algorithm (유전자 알고리즘과 퍼지 제어를 적용한 자율운송장치의 경로 계획)

  • Kim, Yong-Gug;Lee, Yun-Bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.397-406
    • /
    • 2000
  • Genetic algorithm is used as a means of search, optimization md machine learning, its structure is simple but it is applied to various areas. And it is about an active and effective controller which can flexibly prepare for changeable circumstances. For this study, research about an action base system evolving by itself is also being considered. There is to have a problem that depended entirely on heuristic knowledge of expert forming membership function and control rule for fuzzy controller design. In this paper, for forming the fuzzy control to perform self-organization, we tuned the membership function to the most optimal using a genetic algorithm(GA) and improved the control efficiency by the self-correction and generation of control rules.

  • PDF

Fuzzy Control as Self-Organizing Constraint-Oriented Problem Solving

  • Katai, Osamu;Ida, Masaaki;Sawaragi, Tetsuo;Shimamoto, Kiminori;Iwai, Sosuke
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.887-890
    • /
    • 1993
  • By introducing the notion of constraint-oriented fuzzy inference, we will show that it provides us ways of fuzzy control methods that has abilities of adaptation, learning and self-organization. The basic supporting techniques behind these abilities are“hard”processing by Artificial Intelligence or traditional computational framework and“soft”processing by Neural Network or Genetic Algorithm techniques. The reason that these techniques can be incorporated to fuzzy control systems is that the notion of“constraint”itself has two fundamental properties, that is, the“modularity”property due to its declarativeness and the“logicality”property due to its two-valuedness. From the former property, the modularity property, decomposing and integrating constraints can be done easily and efficiently, which enables us to carry out the above“soft”processing. From the latter property, the logicality property, Qualitative Reasoning and Instance Generalization by Symbolic Reasoning an be carried out, thus enabling the“hard”processing.

  • PDF