• Title/Summary/Keyword: Self?Organizing Map

Search Result 425, Processing Time 0.028 seconds

Image VQ Using Two-Stage Self-Organizing Feature Map in the Transform Domain (2 단 Self-Organizing Feature Map 을 사용한 변환 영역 영상의 벡터 양자화)

  • 이동학;김영환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.3
    • /
    • pp.57-65
    • /
    • 1995
  • This paper presents a new classified vector quantization (VQ) technique using a neural network model in the transform domain. Prior to designing a codebook, the proposed approach extracts class features from a set of images using self-organizing feature map (SOFM) that has the pattern recognition characteristics and the same as VQ objective. Since we extract the class features from the training images unlike previous approaches, the reconstructed image quality is improved. Moreover, exploiting the adaptivity of the neural network model makes our approach be easily applied to designing a new vector quantizer when the processed image characteristics are changed. After the generalized BFOS algorithm allocates the given bits to each class, codebooks of each class are also generated using SOFM for the maximal reconstructed image quality. In experimental results using monochromatic images, we obtained a good visual quality in the reconstructed image. Also, PSNR is comparable to that of other classified VQ technique and is higher than that of JPEG baseline system.

  • PDF

Flood Stage Forecasting using Kohonen Self-Organizing Map (코호넨 자기조직화함수를 이용한 홍수위 예측)

  • Kim, Seong-Won;Kim, Hyeong-Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1427-1431
    • /
    • 2007
  • In this study, the new methodology which combines Kohonen self-organizing map(KSOM) neural networks model and the conventional neural networks models such as feedforward neural networks model and generalized neural networks model is introduced to forecast flood stage in Nakdong river, Republic of Korea. It is possible to train without output data in KSOM neural networks model. KSOM neural networks model is used to classify the input data before it combines with the conventional neural networks model. Four types of models such as SOM-FFNNM-BP, SOM-GRNNM-GA, FFNNM-BP, and GRNNM-GA are used to train and test performances respectively. From the statistical analysis for training and testing performances, SOM-GRNNM-GA shows the best results compared with the other models such as SOM-FFNNM-BP, FFNNM-BP, and GRNNM-GA and FFNNM-BP shows vice-versa. From this study, we can suggest the new methodology to forecast flood stage and construct flood warning system in river basin.

  • PDF

A Method for Producing Animation as a Series of Backward-Projected Patterns in a Self-Organizing Map

  • Wakuya, Hiroshi;Takahama, Eishi;Itoh, Hideaki;Fukumoto, Hisao;Furukawa, Tatsuya
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2012.05a
    • /
    • pp.195-196
    • /
    • 2012
  • A self-organizing map (SOM) can be seen as an analytical tool to discover some underlying rules in the given data set. Based on such distinctive nature called topology-preserving projection, a new method for generating intermediate patterns was proposed. Then, following to this method, producing animation as a series of backward-projected patterns just like a flip book is tried in this article.

  • PDF

A Straight-Line Detecting Algorithm Using a Self-Organizing Map (자기조직화지도를 이용한 직선 추출 알고리즘)

  • Lee Moon-Kyu
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.886-893
    • /
    • 2002
  • The standard Hough transform has been dominantly used to detect straight lines in an image. However, massive storage requirement and low precision in estimating line parameters due to the quantization of parameter space are the major drawbacks of the Hough transform technique. In this paper, to overcome the drawbacks, an iterative algorithm based on a self-organizing map is presented. The self-organizing map can be adaptively learned such that image points are clustered by prominent lines. Through the procedure of the algorithm, a set of lines are sequentially detected one at a time. Computational results for synthetically generated images are given. The promise of the algorithm is also demonstrated with its application to two natural images of inserts.

  • PDF

A Study of Data Mining Techniques in Bankruptcy Prediction (데이터 마이닝 기법의 기업도산예측 실증분석)

  • Lee, Kidong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.2
    • /
    • pp.105-127
    • /
    • 2003
  • In this paper, four different data mining techniques, two neural networks and two statistical modeling techniques, are compared in terms of prediction accuracy in the context of bankruptcy prediction. In business setting, how to accurately detect the condition of a firm has been an important event in the literature. In neural networks, Backpropagation (BP) network and the Kohonen self-organizing feature map, are selected and compared each other while in statistical modeling techniques, discriminant analysis and logistic regression are also performed to provide performance benchmarks for the neural network experiment. The findings suggest that the BP network is a better choice among the data mining tools compared. This paper also identified some distinctive characteristics of Kohonen self-organizing feature map.

An Optimal Clustering using Hybrid Self Organizing Map

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.10-14
    • /
    • 2006
  • Many clustering methods have been studied. For the most part of these methods may be needed to determine the number of clusters. But, there are few methods for determining the number of population clusters objectively. It is difficult to determine the cluster size. In general, the number of clusters is decided by subjectively prior knowledge. Because the results of clustering depend on the number of clusters, it must be determined seriously. In this paper, we propose an efficient method for determining the number of clusters using hybrid' self organizing map and new criterion for evaluating the clustering result. In the experiment, we verify our model to compare other clustering methods using the data sets from UCI machine learning repository.

Self Organizing Feature Map Type Neural Computation Algorithm for Travelling Salesman Problem (SOFM(Self-Organizing Feature Map)형식의 Travelling Salesman 문제 해석 알고리즘)

  • Seok, Jin-Wuk;Cho, Seong-Won;Choi, Gyung-Sam
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.983-985
    • /
    • 1995
  • In this paper, we propose a Self Organizing Feature Map (SOFM) Type Neural Computation Algorithm for the Travelling Salesman Problem(TSP). The actual best solution to the TSP problem is computatinally very hard. The reason is that it has many local minim points. Until now, in neural computation field, Hopield-Tank type algorithm is widely used for the TSP. SOFM and Elastic Net algorithm are other attempts for the TSP. In order to apply SOFM type neural computation algorithms to the TSP, the object function forms a euclidean norm between two vectors. We propose a Largrangian for the above request, and induce a learning equation. Experimental results represent that feasible solutions would be taken with the proposed algorithm.

  • PDF

The Intelligence Algorithm of Semiconductor Package Evaluation by using Scanning Acoustic Tomograph (Scanning Acoustic Tomograph 방식을 이용한 지능형 반도체 평가 알고리즘)

  • Kim J. Y.;Kim C. H.;Song K. S.;Yang D. J.;Jhang J. H.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.91-96
    • /
    • 2005
  • In this study, researchers developed the estimative algorithm for artificial defects in semiconductor packages and performed it by pattern recognition technology. For this purpose, the estimative algorithm was included that researchers made software with MATLAB. The software consists of some procedures including ultrasonic image acquisition, equalization filtering, Self-Organizing Map and Backpropagation Neural Network. Self-Organizing Map and Backpropagation Neural Network are belong to methods of Neural Networks. And the pattern recognition technology has applied to classify three kinds of detective patterns in semiconductor packages: Crack, Delamination and Normal. According to the results, we were confirmed that estimative algorithm was provided the recognition rates of $75.7\%$ (for Crack) and $83_4\%$ (for Delamination) and $87.2\%$ (for Normal).

  • PDF

Distributed controllers using a Self-Organizing Map Neural Network in SDN environment (SDN 환경에서 자기조직화지도 신경망을 이용한 분산 컨트롤러)

  • Yoo, Seung-Eon;Kim, Min-Woo;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.47-48
    • /
    • 2019
  • 본 논문에서는 신경망의 일종인 자기조직화지도(Self Organizing Map)을 이용하여 컨트롤러의 순서를 정하는 모델을 제안하였다. 자기조직화지도는 자율 학습에 의한 클러스터링을 수행하는 알고리즘으로써 컨트롤러에 가중치를 부여하고 컨트롤러 간 거리를 계산하여 효율적인 컨트롤러 선택을 목표로 한다.

  • PDF

Principal Components Self-Organizing Map PC-SOM (주성분 자기조직화 지도 PC-SOM)

  • 허명회
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.321-333
    • /
    • 2003
  • Self-organizing map (SOM), a unsupervised learning neural network, has been developed by T. Kohonen since 1980's. Main application areas were pattern recognition and text retrieval. Because of that, it has not been spread to statisticians until late. Recently, SOM's are frequently drawn in data mining fields. Kohonen's SOM, however, needs improvements to become a statistician's standard tool. First, there should be a good guideline as for the size of map. Second, an enhanced visualization mode is wanted. In this study, principal components self-organizing map (PC-SOM), a modification of Kohonen's SOM, is proposed to meet such needs. PC-SOM performs one-dimensional SOM during the first stage to decompose input units into node weights and residuals. At the second stage, another one-dimensional SOM is applied to the residuals of the first stage. Finally, by putting together two stages, one obtains two-dimensional SOM. Such procedure can be easily expanded to construct three or more dimensional maps. The number of grid lines along the second axis is determined automatically, once that of the first axis is given by the data analyst. Furthermore, PC-SOM provides easily interpretable map axes. Such merits of PC-SOM are demonstrated with well-known Fisher's iris data and a simulated data set.