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Abstract

Many clustering methods have been studied. For the most part of these methods may be needed to determine the number of
clusters. But, there are few methods for determining the number of population clusters objectively. Tt is difficult to determine the
cluster size. In general, the number of clusters is decided by subjectively prior knowledge. Because the results of clustering
depend on the number of clusters, it must be determined seriously. In this paper, we propose an efficient method for
determining the number of clusters using hybrid 'self organizing map and new criterion for evaluating the clustering result. In the
experiment, we verify our model to compare other clustering methods using the data sets from UCI machine learning repository.
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1. Introduction

Automatic determination of the number of population
clusters is needed in the clustering like K-means algorithm,
hierarchical clustering method, etc. Usually we have
determined the number of clusters subjectively. In this paper,
we propose a method for automatic determination of the
number of clusters using Hybrid Self Organizing Map(HSOM)
based fuzzy clustering. That is, the SOM, Bayesian learning,
and fuzzy set logic are used in proposed algorithm for
dec_ision of optimal number of clusters. The existing methods
have had an uncertainty because they have determined the
number of clusters with subjectivity. One of the gates to
eliminate the uncertainty is through the fuzzy set theory[13].
If X is a collection of objects denoted generally by x, then a
fuzzy set 4 in X consists of a set of x and its membership
function. The membership function can be expressed by values
from 0 to 1 as the degree of truth that maps X to 4. However
it is difficult to choose a suitable form for the membership
function. Nowadays, it is common to determine the
membership function subjectively. Then this may make the
problems more ambiguous in the machine learning, which
should resolve the uncertainty. In this paper, we propose an
objective method to select the membership function for
determining the number of clusters by heuristic approach using
HSOM. For illustration of our method, we consider examples
with comparing other clustering methods which are the SOM,
K-means algorithm and statistical clustering methods using the
data sets from UCI machine learning repository.

2. Optimal Clustering

2.1 Determining the number of clusters

The cluster is a set of adjacent objects in training data.
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Objects in the same cluster have close similarity and objects
in other clusters have dissimilarity. We use distance as a
measure of similarity between objects. The first problem to
consider in clustering is to determine the number of clusters.
K-means method requires an initial number of clusters and
hierarchical clustering technique also requires an optimal
number of clusters for stopping clustering process[4]. But it is
hard to find any objective algorithm to determine the initial
cluster size, and most of them are determined subjectively. So
we propose a HSOM for fuzzy clustering algorithm to
determine the optimal cluster size.

2.2 Fuzzy Clustering

Let X is a nonempty set and x is an element of X. A
fuzzy set A is defined as the following[14].

A={(x, ps(NlxeX} 1)

where 1 ,(x) is a membership function that expresses a
degree of inclusion of x into A. In this paper, fuzzy set is
used to determine the cluster size in clustering[2]. These
membership functions of fuzzy set for clustering are computed
repeatedly by HSOM from given training data. That is, X
becomes a set of all possible clusters and A becomes a fuzzy

set of appropriate cluster size. p,(x) is a membership

function for each possible cluster size. Therefore, we decide
the element with the largest membership function in fuzzy set
A to optimal cluster size.

3. A Hybrid Self Organizing Map

3.1 Self Organizing Map

The Kohonen's networks have two models, These are SOM
and LVQ(learning vector quantization)[7]. We use SOM in
this paper because SOM is a neural network model for
unsupervised learning[5]. Though SOM requires a size of
feature maps, it may not need the number of clusters. The



SOM algorithm can be expressed in the following steps[5].

Step1: Initialization

Choose random values for the initial weights.
Step2: Winner finding

Find the winner neuron j* at time k, using the minimum
distance criterion

j*=arg1A;l B —w;l, j=1,...,N?

where x(k) represents the kth input pattern and | .|| is
the Euclidean norm.
Step3: Weight updating

Adjust the weights of the winner and its neighbors, using
the following rule,

w]-(k-'r-l):{

w &)+ 9(k)(x(k) —w (B) if jeN (k)
w l(k) o.w,

where (k) is a positive constant and Nj*(x) is the
neighborhood set of the winner neuron j* at time k.

Repeat: until given conditions satisfaction.

3.2 Hybrid SOM

We use Bayesian learning approach for proposed
algorithm[6]. The Bayesian approach assigns a degree of
plausibility to any proposition, hypothesis, or model. The
Bayesian learning starts from the following Bayes’ rule.

P(mp) =L @

where M is- a parameterized model and D represents a data
set. The use of priors is the strength of Bayesian approach,
since it allows incorporating prior knowledge and constraints
into the modeling process. Using the Bayes’ rule with a
chosen probability model means that the data, D affect the
posterior inference only through P(D|M) which is called the
likelihood function. Bayes’ rule can now be used to combine
the information in the data with the prior probability. In
particular, the interest is likely to focus on the posterior
probability. To make a decision about new data, often called
predictive inference, we follow a similar logic. Before the
data, D has a following form.

AD)= [ PD,Wau= [ DADMHaM — (3)

This is the prior predictive distribution. The distribution of
D is called the posterior predictive distribution, posterior
because it is conditional on the training data, D and predictive

because it is a predictive for a new data D.

KD D)= [ RDIMP(DIM) d M @

This displays the posterior predictive distribution as an
average of conditional predictions over the posterior
distribution of M. In conclusion, this bayesian learning
consists of three components which are prior probability
distribution, likelihood function and posterior probability
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distribution. The prior probability distribution has the
information of past data or initial knowledge of model. We
use it to represent past training results. Current training data
are appeared on likelihood function. We get posterior
probability distribution by using prior probability distribution
and likelihood function. The posterior distribution is used to
decide how to do for a given problem.

Fach node of the output layer achieves clustering by
competitive learning from training data. Each object crisply
belongs to only one exclusive cluster after the last training.
And the clustering result is only one type because the weights
have fixed values in nodes of SOM after final training. This

result is wusually not optimal[l1],[10],[11],[12] and it is

impossible to repeat the different experiments to determine

membership function of fuzzy set. In this paper, we get a
fuzzy set with repeated experiments by using Bayesian
inference[3],[9] that consists of prior probability distribution,
posterior probability distribution, and likelihood distribution to
SOM. The proposed HSOM updates parameters of probability
distribution without having the fixed values of weights on
each node of output layer. This strategy makes it possible to
create the membership function by performing repeated
experiments with same data to get different results. The
proposed method does not always offer same results for the
same training data because it uses a random number from the
last updated distribution for clustering. The membership
function of fuzzy set is determined by Bayesian learning[6]
based SOM that computes a posterior by combining prior and
likelihood. The proposed algorithm in this paper is composed
of four phases. The first one is an initial phase. In this phase,
standardization for the input data is performed to use the
Euclidean distance that computes distance input data and
weights which can be used as a measurement to determine
winner node. Generally SOM is normalized from 0 to 1 while
the proposed algorithm changes the input data  to the
standardized data that follow the Gaussian distribution of
mean 0 and variance 1 to combine proposed distribution. The
size of feature maps is decided in this phase. This decision
can be subjective. But it is relatively objective compared to
the K-means or hierarchical clustering that requires an initial
number of clusters in advance. For example, if the size of the
feature maps is determined as 5*5, the results of clusters are
from 1 to 25 optimally. Of course if the size of feature maps
grows, the number of the optimal cluster can grows
accordingly. But the advantage of SOM is that it allows
objective clustering without exact information on clustering.
We determine prior probability distribution of the weights of
the nodes in feature maps. A Gaussian distribution with mean
0 and variance 1 is used because input data are standardized
and we use an Euclidean distance as a similarity measure. In
second phase, the distance between input data and weights is
measured and the winner node is determined as minimum
distance node. Next phase is the parameters updating step of
weights distribution. Yet the parameters update of weights
distribution is limited to the winner node. This learning is
repeated until the given stopping rules are satisfied. Generally
the given sopping rules are determined by the number of
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iteration of learning data and the tolerance that has update
range for the parameters of weights distribution. In the last
phase, we find fuzzy set about optimal number of clusters
through repeated experiments using the final updated weights
distribution of feature maps. Figure 1 shows_the conception of
ours.
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Fig. 1. HSOM learning

We also summarize HSOM by pseudo code in the

following.

Step1: Initialize
(n: data size, p: the dimension of input vectors)
Normalization of input vectors

x;=(x4,,x ;) represents the ith input pattern
xrgormalz( Xa_—Hy | XpT Hiyp
12 0-1 ’ ] Op
— i !
=(x 7, ™

2 N(0, 1), (i=1, ..., n): likelihood

1.2 Initialize the weights vectors: Prior of weights
1.2.1 determine the distribution type of A -)

A +) is any probability density function(pdf)
w~R6) :
optionally, 6~g(¢): ¢ is the hyper-parameter of 4,
g(+) is also pdf '

Step2: Determine winner node

(m: feature map dimension)

2.1 Weights sampling from current prior

2.2 Compute the dist(x"™ w )

normal

(Euclidean distance of x7% and w )

dist(x ™ w P)
=V (= 1) b e () 2
G=1,...,m)G=1,... '

2.3 Determine winner node
w , is winner node if dist(x, w < distx, w ),

,m?)

(j=1,...,m?), that is, w,= arg1A {disx, w )}
Step3: Update distribution of weights
3.1 Compute posterior of winner node using Bayes’ rule
3.2 Replace current posterior by new prior
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Repeat Step2 and Step3 until given conditions are satisfied
Step4: Extract Fuzzy Set for the number of Clusters

4.1 Repeat experiments until given number

4.1 Determine the membership function of fuzzy set

Before trying to the experiment, we initialize the weight value
of feature maps. By Gaussian distribution with mean 4 , and

2

variance ¢, the weight value of each feature node is

generating number from this distribution.
- 2
w~Ny y, 0%), ) )
f(wl 0.2)= 1 EXD(_M—)
i w 0w =\ ong w

202,

u, and ¢, are determined by 0 and 1 respectively. We
use it to match the scale of input data and weights because
the proposed algorithm computes the FEuclidean distance
between each weight from this distribution and standardized
input data for determining the winner node. In our algorithm,
the input vectors are standardized to Gaussian random sample
with (0, 1) as parameters. Then the likelihood distribution of
each input value, x is a Gaussian distribution as (6).

X"’N( w,azx), (6)
_ 2

Also, the mean and the variance in (6) are 0 and 1. The
weight distribution of winner node is updated by Bayesian
learning. The result of Bayesian learning is a probability
distribution over model parameters that expresses our beliefs
regarding the hoe likely the different parameters values are.
The initial distribution of weight is prior distribution. We
update this prior distribution to posterior distribution using
Bayes’rule.

N Py x ) P(w)
P(Wley ,xp)_ P(xl,"',xp) (7)
o L{wlx 4, -, x )P (w)
The vposterior distribution combines the likelihood

distribution, which contains the information about x derived
from observation, with the which contains the
information about w. We compute a posterior probability

prior,

distribution as (8), using Gaussian prior and Gaussian
likelihood.
P(utx)oc A w) (4 w) ,
1 _(w—p
“V2re, exp( 202, ) @®)
1  (x—w)? )
*V 2no, exp( 202
(w_ alut trzwx)z
o exp |~ ai+ 6%
P 5 0id?,
o+ ad%,

Current posterior distribution is used for the next prior
distribution. In next training we find the weight value of



output node is generated from this prior probability
distribution. The wupdating processes are continued until
satisfying stopping conditions. The stopping conditions are no
noticeable change to feature map has occurred and predefined
iteration size of total training data and given iteration of
training data. We get the final updated weight distribution of
feature node by Bayesian learning and SOM.

3.3 New Criterion for Evaluating the Clustering Result

A good clustering will produce high quality clusters with
high intra-cluster similarity and low inter-cluster similarity[4].
So, we propose a new criterion for clustering on the. ground
of above good clustering. This criterion is composed of two
components which were the variance of objects in clusters and
the penalty of increasing the number of clusters. We call our
new criterion to clustering criterion based on variance and
penalty(CCVP). QOur CCVP measure is defined as the
following.

N b

M

In the above equation, M is the number of clusters, _v_, is

the average of variance of objects in the ith cluster. V, is

the variance of M clusters. This is defined as the following.

N 1 M — 2
Vu="-1 ;1(6,-— ) (10)

In the equation (10), the ¢ is the center of jth cluster and

“c is the average of the centers of M clusters. The smaller
the CCVP value is, the better the clustering result is.

4. Experimental Results
For the experiments, we use Iris plants, Glass identification,
and Abalone data in UCI machine learning repository[10]. The
summary information of these data sets is shown in following

table.

Table 1. Summary of Training Data

Data set # of instances # of labels # of attributes
Iris 150 3 4
Glass 214 7 9
Abalone 4177 29 8

In above table, the # of labels is the number of labels in
target variable. And the # of attributes is the number of input
attributes for clustering. By our proposed method, we get the
following fuzzy clustering results.

In figure 2, the Iris plants data have 3 as the optimal
number of clusters by proposed HSOM. So, the value of
membership function is the largest.

In figure 3, the Glass identification data have 6 as the
optimal number of clusters by proposed HSOM.

In figure 4, the Abalone data have 20 as the optimal
number of clusters by proposed HSOM. Next we verify our
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model with other clustering methods. The CCVP measure is
good when it is smaller. And the clustering is good when the
SD(standard deviation) is smaller. Because the smaller SD of
clustering is the more similar objects of data are. We use the
k of K-means clustering and the stopping cluster size of
hierarchical clustering by the number of labels of target
variable.
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# of clusters

Fig. 2. Clustering result: Iris plants
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Fig. 3. Clustering result: Glass identification
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Fig. 4. Clustering result: Abalone

Table 2. Clustering results of comparative models

CCVP

Data set Methods # of clusters Mean 3D
SOM 5 0.017 0.146

Iris K-means 3 0.093 0.583
Hierarchical 3 0.121 0912

HSOM 3 0.002 0.058

SOM 11 0.184 0.364

Glass K-means 7 0.312 0.986
Hierarchical 7 0.498 1.014

HSOM 6 0.105 0.215

SOM 24 2.515 6.311
Abalone K-means 29 4319 11.358
Hierarchical 29 5914 12.984

HSOM 20 1.313 4.560
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The above result showe the CCVP mean and CCVP SD of
HSOM is the smallest among comparative clustering methods.
So, we find the improved performance of HSOM.

5. Conclusion

In this paper, we propose a method to determine the
number of clusters in cluster analysis using HSOM and new
criterion for evaluating the clustering result. Unlike other
comparative methods, we show an objective method of finding
fuzzy set using Bayesian learning and SOM. We make a
fuzzy set for determining the number of clusters heuristically,
In our work, we use Bayesian inference using conjugate prior
probability distribution to unsupervised machine learning
algorithm. This has the independent assumption between input
variables. If we have not independent assumption, we can
consider Bayesian computing with Markov Chain Monte Carlo
simulation. Bayesian inference with Markov Chain Monte
Carlo can be used for complex domain to get more exact
results. This calls for considerable computing time. So, we
think over the computing time in machine learning with
Markov Chain Monte Carlo. It will be remained for future
work.
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