• Title/Summary/Keyword: Seismic sensor

Search Result 58, Processing Time 0.028 seconds

Seismic responses of a metro tunnel in a ground fissure site

  • Liu, Nina;Huang, Qiang-Bing;Fan, Wen;Ma, Yu-Jie;Peng, Jian-Bing
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.775-781
    • /
    • 2018
  • Shake table tests were conducted on scaled tunnel model to investigate the mechanism and effect of seismic loadings on horseshoe scaled tunnel model in ground fissure site. Key technical details of the experimental test were set up, including similarity relations, boundary conditions, sensor layout, modelling methods were presented. Synthetic waves and El Centro waves were adopted as the input earthquake waves. Results measured from hanging wall and foot wall were compared and analyzed. It is found that the seismic loadings increased the subsidence of hanging wall and lead to the appearance and propagation of cracks. The values of acceleration, earth pressure and strain were greater in the hanging wall than those in the foot wall. The tunnel exhibited the greatest earth pressure on right and left arches, however, the earth pressure on the crown of arch is the second largest and the inverted arch has the least earth pressure in the same tunnel section. Therefore, the effect of the hanging wall on the seismic performance of metro tunnel in earth fissure ground should be considered in the seismic design.

An Ideal strain gage placement plan for structural health monitoring under seismic loadings

  • Vafaei, Mohammadreza;Alih, Sophia C.
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.541-553
    • /
    • 2015
  • Structural Health Monitoring (SHM) systems can provide valuable information regarding the safety of structures during and after ground motions which can be used by authorities to reduce post-earthquake hazards. Strain gages as a key element play an important role in the success of SHM systems. Reducing the number of required strain gages while keeping the efficiency of SHM system not only can reduce the cost of structural health monitoring but also avoids storage and process of uninformative data. In this study, a method based on performance based seismic design of structures is proposed for ideal placement of stain gages in structures. The robustness and efficiency of the proposed method is demonstrated through installation of strain gages on an Airport Traffic Control (ATC) Tower. The obtained results show that the number of required strain gages decrease significantly.

Characteristics of Virtual Reflection Images in Seismic Interferometry Using Synthetic Seismic Data (합성탄성파자료를 이용한 지진파 간섭법의 가상반사파 영상 특성)

  • Kim, Ki Young;Park, Iseul;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.2
    • /
    • pp.94-102
    • /
    • 2018
  • To characterize virtual reflection images of deep subsurface by the method of seismic interferometry, we analyzed effects of offset range, ambient noise, missing data, and statics on interferograms. For the analyses, seismic energy was simulated to be generated by a 5 Hz point source at the surface. Vertical components of particle velocity were computed at 201 sensor locations at 100 m depths of 1 km intervals by the finite difference method. Each pair of synthetic seismic traces was cross-correlated to generate stacked reflection section by the conventional processing method. Wide-angle reflection problems in reflection interferometry can be minimized by setting a maximum offset range. Ambient noise, missing data, and statics turn to yield processing noise that spreads out from virtual sources due to stretch mutes during normal moveout corrections. The level of processing noise is most sensitive to amplitude and duration time of ambient noise in stacked sections but also affected by number of missing data and the amount of statics.

Experimental Implementation of a Cableless Seismic Data Acquisition Module Using Arduino (아두이노를 활용한 무선 탄성파 자료취득 모듈 구현 실험)

  • Chanil Kim;Sangin Cho;Sukjoon Pyun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.3
    • /
    • pp.103-113
    • /
    • 2023
  • In the oil and gas exploration market, various cableless seismic systems have been developed as an alternative to improve data acquisition efficiency. However, developing such equipment at a small scale for academic research is not available owing to highly priced commercial products. Fortunately, building and experimenting with open-source hardware enable the academic utilization of cableless seismic equipment with relatively low cost. This study aims to develop a cableless seismic acquisition module using Arduino. A cableless seismic system requires the combination of signal sensing, simple pre-processing, and data storage in a single device. A conventional geophone is used as the sensor that detects the seismic wave signal. In addition, it is connected to an Arduino circuit that plays a role in implementing the processing and storing module for the detected signals. Three main functions are implemented in the Arduino module: preprocessing, A/D conversion, and data storage. The developed single-channel module can acquire a common receiver gather from multiple source experiments.

The Study on Piezoresistance Change Ratio of Cantilever type Acceleration Sensor (지지조건이 압저항 가속도 센서의 민감도에 미치는 영향 평가)

  • Shim J.J.;Han G.J.;Han D.S.;Lee S.W.;Kim T.H.;Lee S.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1381-1384
    • /
    • 2005
  • In these days, the piezoresistive material has been applied to various sensors in order to measure the change of physical quantities. But the relationship between the sensitivity of a sensor and the position and size of piezoresistor has rarely been studied. Therefore, this paper was focused on the distribution of the resistance change ratio on the diaphragm and bridge surface where piezoresistor would be formed, and proposed the proper size and position of piezoresistor with which the sensitivity of sensor was increased. As the width of mass and boss was increased, the distance between piezoresistors was closed and the maximum value of resistance change ratio was decreased by the increase of the structure stiffness. And according to the increment of seismic mass size, the value of resistance change ratio is decreased by increase of the structure stiffness. Y directional piezoresistor is formed in the position of $100\mu{m}\;apart\;from\;cantilever\;edge\;and\;length\;of\;that\;is\;800\mu{m}$.

  • PDF

The effect of the boss and mass on the sensitivity of the piezoresistive sensor (압저항 센서에서 보스와 매스가 센서 민감도에 미치는 영향)

  • Shim, Jae-Joon;Lee, Sung-Wook;Han, Dong-Seop;Kim, Tae-Hyung;Han, Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.405-410
    • /
    • 2005
  • In these days, the piezoresistive material has been applied to various sensors in order to measure the change of physical quantities. But the relationship between the sensitivity of a sensor and the position and size of piezoresistor has rarely been studied. Therefore, this paper was focused on the distribution of the resistance change ratio on the diaphragm and bridge surface where piezoresistor would be formed, and proposed the proper size and position of piezoresistor with which the sensitivity of sensor was increased. As the width of mass and boss was increased, the distance between piezoresistors was closed and the maximum value of resistance change ratio was decreased by the increase of the structure stiffness.

  • PDF

Development of AE/MS monitoring system and its application (AE/MS 모니터링시스템개발과 적용연구)

  • Cheon, Dae-Sung;Jung, Yong-Bok;Park, Chan;Synn, Joong-Ho;Jang, Hyun-Ick
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.199-210
    • /
    • 2008
  • Acoustic emission(AE)/Microseimsic(MS) activities are low-energy seismic events associated with a sudden inelastic deformation such as the sudden movement of existing fractures, the generation of new fractures or the propagation of fractures. These events rapidly increase before major failure and happen within a given rock volume and radiate detectable seismic waves. The main difference between AE and MS signals is that the seismic motion frequencies of AE signals are higher than those of MS signals. As the failure of geotechnical structures usually happens as a high velocity and small displacement, it is not easy to determine the precursor and initiation stress level of failure in displacement detection method. To overcome this problem, AE/MS techniques for detection of structure failure and damage have recently adopt in civil engineering. In this study, AE/MS monitoring system, which consist of sensor, data acquisition and operation program, is constructed with domestic technology. To verify and optimize the developed system, we are now carrying out the field application at an underground research laboratory and the developed AE/MS monitoring will be used in detecting of seismic events with various scales.

  • PDF

Development of Seismic Safety Evaluation Indices for Dual-Plane, Cable-stayed Bridges With H-type Pylons (H형 주탑 2면 사장교의 지진 안전성 평가지표 개발)

  • Chimedsuren, Solongo;An, Hyo Joon;Shin, Soobong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.261-268
    • /
    • 2019
  • This paper proposes damage indices efficient on evaluating the seismic safety of cable-stayed bridges, especially dual-plane, cable-stayed bridges with H-type pylons. The research assumes that the location of accelerometers is already defined as given in the 2017 Ministry of the Interior and Safety (MOIS) guideline. In other words, the paper does not attempt to suggest optimal sensor location for the seismic safety evaluation of cable-stayed bridges. The proposed damage indices are based on those for building structures widely applied in the field already. Those include changes in natural frequencies and changes in relative lateral displacements. In addition, the study proposes other efficient damage indices as the rotation changes at the top of pylons and in the midspan of the girder system. Sensitivity analysis for various damage indices is performed through dynamic analysis using selected earthquake ground motions. The paper compares the effectiveness of the damage indices.

Footstep Detection and Classification Algorithms based Seismic Sensor (진동센서 기반 걸음걸이 검출 및 분류 알고리즘)

  • Kang, Youn Joung;Lee, Jaeil;Bea, Jinho;Lee, Chong Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.162-172
    • /
    • 2015
  • In this paper, we propose an adaptive detection algorithm of footstep and a classification algorithm for activities of the detected footstep. The proposed algorithm can detect and classify whole movement as well as individual and irregular activities, since it does not use continuous footstep signals which are used by most previous research. For classifying movement, we use feature vectors obtained from frequency spectrum from FFT, CWT, AR model and image of AR spectrogram. With SVM classifier, we obtain classification accuracy of single footstep activities over 90% when feature vectors using AR spectrogram image are used.

Broadband Seismic Exploration Technologies via Ghost Removal (도깨비파 제거를 통한 광대역 탄성파 탐사 기술)

  • Choi, Woochang;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.183-197
    • /
    • 2018
  • In the delineation of geological structures using seismic exploration, it is very important to improve resolution of seismic data as well as accurate velocity model building and subsurface imaging. The resolution of seismic data can be enhanced by employing high-frequency energy sources or by applying deconvolution techniques in data processing. In marine seismic exploration, however, the main reason for degradation of resolution is the loss of specific frequency components due to ghosts. If we remove the ghosts, we can obtain broadband seismic data by avoiding frequency loss, and thus providing high-resolution subsurface images. Although ghosts can be properly filtered out in the data processing step, more effective broadband seismic technologies have been developing through the evolution of seismic instruments and the innovation of survey design. Overseas exploration companies developed brand-new configurations of receivers such as over/under streamer and variable-depth streamer, or ghost removal techniques using dual-sensor streamer to serve high-resolution imaging technologies. Unfortunately, neither broadband seismic instrument nor processing technique has been studied in Korea. In this paper, we introduce fundamental theories and current status of broadband seismic technologies to assist domestic researchers to study those technologies.