DOI QR코드

DOI QR Code

Broadband Seismic Exploration Technologies via Ghost Removal

도깨비파 제거를 통한 광대역 탄성파 탐사 기술

  • Choi, Woochang (Department of Energy Resources Engineering, Inha University) ;
  • Pyun, Sukjoon (Department of Energy Resources Engineering, Inha University)
  • 최우창 (인하대학교 에너지자원공학과) ;
  • 편석준 (인하대학교 에너지자원공학과)
  • Received : 2018.08.03
  • Accepted : 2018.08.27
  • Published : 2018.08.31

Abstract

In the delineation of geological structures using seismic exploration, it is very important to improve resolution of seismic data as well as accurate velocity model building and subsurface imaging. The resolution of seismic data can be enhanced by employing high-frequency energy sources or by applying deconvolution techniques in data processing. In marine seismic exploration, however, the main reason for degradation of resolution is the loss of specific frequency components due to ghosts. If we remove the ghosts, we can obtain broadband seismic data by avoiding frequency loss, and thus providing high-resolution subsurface images. Although ghosts can be properly filtered out in the data processing step, more effective broadband seismic technologies have been developing through the evolution of seismic instruments and the innovation of survey design. Overseas exploration companies developed brand-new configurations of receivers such as over/under streamer and variable-depth streamer, or ghost removal techniques using dual-sensor streamer to serve high-resolution imaging technologies. Unfortunately, neither broadband seismic instrument nor processing technique has been studied in Korea. In this paper, we introduce fundamental theories and current status of broadband seismic technologies to assist domestic researchers to study those technologies.

탄성파 탐사를 이용한 지질구조 규명에 있어 정확한 속도모델 구축이나 영상화 기술 개발만큼 중요한 것이 자료의 분해능을 높이는 기술이다. 일반적으로 자료취득 과정에서 고주파 송신원을 사용하거나 자료처리 과정에서 곱풀기(deconvolution) 등의 기법을 적용하여 분해능을 향상시킬 수 있다. 그러나 해양 탄성파 탐사에서 분해능을 저해하는 가장 큰 원인은 도깨비파에 의한 특정 주파수 성분의 손실이다. 따라서 도깨비파를 제거하면 주파수 손실을 방지하여 광대역 탄성파 자료를 얻을 수 있고, 결과적으로 높은 분해능의 지층 영상을 얻을 수 있다. 도깨비파 제거는 자료처리 과정에서 적절한 필터를 적용하여 수행할 수 있지만, 최근에는 탐사 장비의 발전과 탐사 설계의 혁신을 통해 효과적인 광대역 탄성파 탐사 기술이 개발되고 있다. 해외 탐사전문 기업들은 오버/언더 스트리머나 가변 심도 스트리머와 같이 새로운 수신기 배열을 개발하거나 이중 센서 스트리머를 이용한 도깨비파 제거 기술을 확보하여 고분해능 영상화 기술을 제공하고 있다. 안타깝게도 국내에서는 광대역 탄성파 탐사 장비나 기술에 대한 연구가 거의 이루어지지 않고 있다. 본 논문에서는 국내 광대역 탄성파 탐사 연구에 도움이 될 수 있도록 그 기본 이론과 기술 현황을 소개하였다.

Keywords

References

  1. Amundsen, L., 1993, Wavenumber-based filtering of marine point-source data, Geophysics, 58(9), 1335-1348. https://doi.org/10.1190/1.1443516
  2. Amundsen, L., and Landro, M., 2013a, Broadband Seismic Technology and Beyond, GEO ExPro, 10(1).
  3. Amundsen, L., and Landro, M., 2013b, Broadband Seismic Technology and Beyond, Part II: Exorcizing Seismic Ghosts, GEO ExPro, 10(2).
  4. Amundsen, L., and Landro, M., 2014, Broadband Seismic Technology and Beyond, X: IsoMetrix-Isometric Sampling, GEO ExPro, 11(4).
  5. Barr, F. J., and Sanders, J. I., 1989, Attenuation of water-column reverberations using pressure and velocity detectors in a water-bottom cable, 59th Ann. Internal. Mtg. Soc. Expl. Geophys., Expanded Abstract, 653-656.
  6. Berni, A. J., 1982, Vertical component accelerometer, U.S. Patent No 4,345,473.
  7. Berni, A. J., 1984, Marine seismic system, U. S. Patent 4,437,175.
  8. Berni, A. J., 1985a, Low noise mounting for accelerometer used in marine cable, U. S. Patent 4,477,887.
  9. Berni, A. J., 1985b, Marine seismic system, U. S. Patent 4,520,467.
  10. Brink, M., and Svendsen, M., 1987, Marine seismic exploration using vertical receiver arrays: A means for reduction of weather downtime, 57th Ann. Internal. Mtg. Soc. Expl. Geophys., Expanded Abstract, 184-187.
  11. Carlson, D. H., Long, A., Sollner, W., Tabti, H., Tenghamn, R., and Lunde, N., 2007, Increased resolution and penetration from a towed dual-sensor streamer, First Break, 25(12), 71-77.
  12. Claerbout, J. F., 1976, Fundamentals of geophysical data processing, McGraw-Hill Book Co.
  13. Denis, M., Brem, V., Pradalie, F., Moinet, F., Retailleau, M., Langlois, J., Bai, B., Taylor, R., Chamberlain, V., and Frith, I., 2013, Can land broadband seismic be as good as marine broadband?, Leading Edge, 32(11), 1382-1388. https://doi.org/10.1190/tle32111382.1
  14. Haggerty, P. E., 1956, Method and apparatus for canceling reverberations in water layers, U.S. Patent No 2,757,356.
  15. Jenkins, F. A., and White, H. E., 1957, Fundamentals of optics, McGraw-Hill Book Co.
  16. Kallweit, R. S., and Wood, L. C., 1982, The limits of resolution of zero-phase wavelets, Geophysics, 47(7), 1035-1046. https://doi.org/10.1190/1.1441367
  17. Kim, S., Koo, N., and Lee, H., 2016, Broadband processing of conventional marine seismic data through source and receiver deghosting in frequency-ray parameter domain, Geophys. and Geophys. Explor., 19(4), 220-227 (in Korean with English abstract). https://doi.org/10.7582/GGE.2016.19.4.220
  18. Knapp, R. W., 1991, Fresnel zones in the light of broadband data, Geophysics, 56(3), 354-359. https://doi.org/10.1190/1.1443049
  19. Kragh, E., Muyzert, E., Curtis, T., Svendsen, M., and Kapadia, D., 2010, Efficient broadband marine acquisition and processing for improved resolution and deep imaging, Leading Edge, 29(4), 464-469. https://doi.org/10.1190/1.3378309
  20. Krail, P. M., and Shin, Y., 1990, Deconvolution of a directional marine source, Geophysics, 55(12), 1542-1548. https://doi.org/10.1190/1.1442805
  21. Kustowski, B., Tegtmeier-Last, S., Cole, J., Clark, D., and Hennenfent, G., 2013, Curvelet noise attenuation guided by a signal or noise model: case studies, 83rd Ann. Internal. Mtg. Soc. Expl. Geophys., Expanded Abstract, 4267-4271.
  22. Leet, L. D., 1937, A plutonic phase in seismic prospecting, Bull. Seismol. Soc. Amer., 27(2), 97-98.
  23. Lindsey, J. P., 1989, The Fresnel zone and its interpretive significance, Leading Edge, 8(10), 33-39. https://doi.org/10.1190/1.1439575
  24. Moldoveanu, N., Seymour, N., Manen, D. V., and Caprioli, P., 2012, Broadband seismic methods for towed-streamer acquisition, 74th Ann. Internat. Mtg., EAGE, Expanded Abstracts.
  25. O'Driscoll, R., King, D., Tatarata, A., and Montico, Y., 2013, Broad-bandwidth data processing of conventional marine streamer data: An offshore West Africa field case study, 83rd Ann. Internal. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 4231-4235.
  26. Parkes, G., and Hegna, S., 2011, An acquisition system that extracts the earth response from seismic data, First Break, 29(12), 81-87.
  27. Parrack, Alvin L., 1976, Method of marine reflection-type seismic exploration, U.S. Patent No 3,979,713.
  28. Paulson, H., Husom, V. A., and Goujon, N., 2015, A MEMS accelerometer for multicomponent streamers, 77th Ann. Internat. Mtg., EAGE, Expanded Abstracts.
  29. Pavey, Jr George M., and Pearson, Raymond H., 1966, Method and underwater streamer apparatus for improving the fidelity of recorded seismic signals, U.S. Patent No 3,290,645.
  30. Posthumus, B. J., 1993, Deghosting using a twin streamer configuration, Geophys. Prospect., 41(3), 267-286. https://doi.org/10.1111/j.1365-2478.1993.tb00570.x
  31. Pyun, S., and Park, Y., 2016, A study on consistency of numerical solutions for wave equation, Geophys. and Geophys. Explor., 19(3), 136-144 (in Korean with English abstract). https://doi.org/10.7582/GGE.2016.19.3.136
  32. Ray, Clifford H., and Moore, Neil A., 1982, High resolution, marine seismic stratigraphic system, U.S. Patent No 4,353,121.
  33. Ricker, N., 1953, Wavelet contraction, wavelet expansion, Geophysics, 18, 769-792. https://doi.org/10.1190/1.1437927
  34. Robertsson, J. O., Moore, I., Ozbek, A., Vassallo, M., Ozdemir, K., and Manen, D. J. V., 2008, Reconstruction of pressure wavefields in the crossline direction using multicomponent streamer recordings, 78th Ann. Internal. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 2988-2992.
  35. Robinson, E., and Treitel, S., 1980, Maximum entropy and the relationship of the partial autocorrelation to the reflection coefficients of a layered system. IEEE Trans. Acoust., Speech, Signal Process., 28(2), 224-235. https://doi.org/10.1109/TASSP.1980.1163381
  36. Schneider, W. A., and Backus, M. M., 1964, Ocean-bottom seismic measurements off the California coast, J. Geophys. Res., 69(6), 1135-1143. https://doi.org/10.1029/JZ069i006p01135
  37. Shannon, C. E., 1949, Communication in the presence of noise, Proc. I.R.E., 86(1), 10-21.
  38. Sheriff, R. E., and Geldart, L. P., 1995, Exploration seismology, Cambridge university press.
  39. Siliqi, R., Payen, T., Sablon, R., and Desrues, K., 2013, Synchronized multi-level source, a robust broadband marine solution, 83rd Ann. Internal. Mtg. Soc. Expl. Geophys., Expanded Abstract, 56-60.
  40. Sonneland, L., Berg, L. E., Eidsvig, P., Haugen, A., Fotland, B., and Vestby, J., 1986, 2-D deghosting using vertical receiver arrays, 56th Ann. Internal. Mtg. Soc. Expl. Geophys., Expanded Abstract, 516-519.
  41. Soubaras, R., and Dowle, R., 2010, Variable-depth streamer-a broadband marine solution, First Break, 28(12), 89-96.
  42. Soubaras, R., and Lafet, Y., 2013, Variable-depth streamer acquisition: Broadband data for imaging and inversion, Geophysics, 78(2), WA27-WA39. https://doi.org/10.1190/geo2012-0297.1
  43. Tenghamn, R., and Dhelie, P. E., 2009, GeoStreamer-increasing the signal-to-noise ratio using a dual-sensor towed streamer, First Break, 27(10), 45-51.
  44. Tenghamn, S. R. L., Sodal, A., and Stenzel, A., 2007a, Apparatus and methods for multicomponent marine geophysical data gathering, U.S. Patent No. 7,239,577.
  45. Tenghamn, R., Vaage, S., and Borresen, C., 2007b, A dualsensor towed marine streamer: Its viable implementation and initial results, 77th Ann. Internal. Mtg. Soc. Expl. Geophys., Expanded Abstract, 989-993.
  46. Vaage, S. T., Tenghamn, S. R. L., and Borresen, C. N., 2008, System for combining signals of pressure sensors and particle motion sensors in marine seismic streamers, U.S. Patent No. 7,359,283.
  47. Van Melle, F. A., and Weatherburn, K. R., 1953, Ghost reflections caused by energy initially reflected above the level of the shot, Geophysics, 18(4), 793-804. https://doi.org/10.1190/1.1437929
  48. Widess, M. B., 1973, How thin is a thin bed?, Geophysics, 38(6), 1176-1180. https://doi.org/10.1190/1.1440403
  49. Woodburn, N., Travis, T., and Masoomzadeh, H., 2012, Clari-FiTM broadband data from conventional streamer acquisition, GEO ExPro, 9(5).
  50. Yilmaz, O., 2001, Seismic data analysis: Processing, inversion, and interpretation of seismic data, Soc. Expl. Geophys.
  51. Zhou, Z., Cvetkovic, M., Xu, B., and Fontana, P., 2012, Analysis of a broadband processing technology applicable to conventional streamer data, First Break, 30(10), 77-82.