• 제목/요약/키워드: Seismic isolation bearing

검색결과 186건 처리시간 0.021초

저층 경량건물의 고성능 내진을 위한 복합면진시스템의 적용 (Application of Hybrid Seismic Isolation System to Realize High Seismic Performance for Low-rise Lightweight Buildings)

  • 천영수
    • 토지주택연구
    • /
    • 제4권2호
    • /
    • pp.185-192
    • /
    • 2013
  • 이 논문에서는 저층 경량건물을 대상으로 고성능 내진을 구현하기 위하여 적용된 복합면진시스템의 적용효과가 비선형해석과 현장실험을 통하여 제시되었다. 이 연구에서 적용된 복합면진시스템은 슬라이딩베어링(sliding bearing)과 적층고무베어링(laminated rubber bearing)을 혼용하는 방법으로 전체 면진시스템의 고유주기를 신장시키는데 있어서 적층고무베어링이 지니는 한계를 극복하기 위한 것이다. 비선형해석결과, 복합면진시스템을 채용하여 설계된 면진건물은 아주 드물게 발생하는 강진에 대해서도 최대응답변위가 허용설계변위 이내이며, 최대응답전단력이 설계지진력 이하이므로 안전하게 유지될 수 있음을 알 수 있었다. 또한 현장실험결과, 면진층의 강성은 설계 등가강성 값의 약 95.8%에 해당하는 값을 나타내 전체 면진시스템의 실제 특성이 설계값과 잘 일치하고 있음을 확인할 수 있었다.

고감쇠면진고무베어링의 유한요소해석 (Finite Element Analysis of High Damping Rubber Bearing for Seismic Isolation)

  • 전정배;김홍주;정경수;김계수;강범수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.292-297
    • /
    • 2000
  • The seismic isolation technology has appeared to be increasingly necessary for highway bridges, LNG tank, nuclear power plant, and building structures in view of earthquake vibrations. Also high-technology industries require effective seismic protection. The Seismic Isolation Bearing - High Damping Rubber Bearing - system has been counted as the most effective way fur seismic isolation, which is now under development and widely used in industries. Here, the commercial FEM software for nonlinear analysis, MARC, has provided force-displacement curves on the rubber system. The analyses have been carried out about fourteen cases; 25%, 50%, 75%, 100%, 125% and 150% horizontal displacements with a different frequency - 0.01Hz and 0.50Hz - and 100% horizontal displacement with four different frequency - 0.01Hz, 0.16667Hz, 0.3333Hz and 0.50Hz. The unknown constants of the strain energy function of Ogden model have been obtained by a tension test and planar shear test.

  • PDF

Energy-balance assessment of shape memory alloy-based seismic isolation devices

  • Ozbulut, O.E.;Hurlebaus, S.
    • Smart Structures and Systems
    • /
    • 제8권4호
    • /
    • pp.399-412
    • /
    • 2011
  • This study compares the performance of two smart isolation systems that utilize superelastic shape memory alloys (SMAs) for seismic protection of bridges using energy balance concepts. The first isolation system is a SMA/rubber-based isolation system (SRB-IS) and consists of a laminated rubber bearing that decouples the superstructure from the bridge piers and a SMA device that provides additional energy dissipation and re-centering capacity. The second isolation system, named as superelastic-friction base isolator (S-FBI), combines the superelastic SMAs with a flat steel-Teflon bearing rather than a laminated rubber bearing. Seismic energy equations of a bridge structure with SMA-based isolation systems are established by absolute and relative energy balance formulations. Nonlinear time history analyses are performed in order to assess the effectiveness of the isolation systems and to compare their performance. The program RSPMatch 2005 is employed to generate spectrum compatible ground motions that are used in time history analyses of the isolated bridge. Results indicate that SRB-IS produces higher seismic input energy, recoverable energy and base shears as compared to the S-FBI system. Also, it is shown that combining superelastic SMAs with a sliding bearing rather than rubber bearing significantly reduce the amount of the required SMA material.

Design approach of high damping rubber bearing for seismic isolation

  • Tiong, Patrick L.Y.;Kelly, James M.;Or, Tan T.
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.303-309
    • /
    • 2017
  • Structural control through seismic isolation using elastomeric rubber bearing, which is also known as High Damping Rubber Bearing (HDRB), has seen an increase in use to provide protective from earthquake, especially for new buildings in earthquake zones. Besides, HDRB has also been used in structural rehabilitation of older yet significant buildings, such as museums and palaces. However, the present design approach applied in normal practice has often resulted in dissimilar HDRB dimension requirement between structural designers and bearing manufacturers mainly due to ineffective communication. Therefore, in order to ease the design process, most HDRB manufacturers have come up with catalogs that list all necessary and relevant product lines specifically for structural engineers to choose from. In fact, these catalogs contain physical dimension, compression property, shear characteristic, and most importantly, the total rubber thickness. Nonetheless, other complicated issues, such as the relationship between target isolation period and displacement demand (which determines the total rubber thickness), are omitted due to cul-de-sac fixing of these values in the catalogs. As such, this paper presents a formula, which is derived and extended from the present design approach, in order to offer a simple guideline for engineers to estimate the required HDRB size. This improved design formula successfully minimizes the discrepancies stumbled upon among structural designers, builders, and rubber bearing manufacturers in terms of variation order issue at the designing stage because manufacturer of isolator is always the last to be appointed in most projects.

지진시 저층건물 면진구조의 동적 거동해석 (Dynamic Analysis of Base-Isolated Low-level Structures Under Earthquake Excitation)

  • 문병영;강경주;강범수;김계수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.448-453
    • /
    • 2001
  • This paper presents an analytical evaluation of the effect of motion on seismic responses of base isolated low-level building and experimental studies to evaluate isolation performances of a rubber bearing. Dynamic responses induced by earthquake were evaluated by response analyses, taking the rubber bearing of the base isolation devices into account. In the experiment, vibration tests were carried out using a model for rubber bearings as isolation devices against earthquake in order to investigate the isolation performances of the rubber bearings. Several kinds of rubber bearing for base isolated low-level building against earthquake are examined. As a result, it is shown that the effect of the motion on the response of the building and the base response is well controlled from a seismic design standpoint.

  • PDF

내진시험을 통한 IRB 시스템의 성능 평가 (Performance Evaluation of IRB System Using Seismic Isolation Test)

  • 박영기;하성훈;우제관;최승복;김현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.401-406
    • /
    • 2013
  • This paper presents experimental evaluation of IRE (isolation roller bearing) seismic isolation device. From the combination of base isolation on the IRE system displacement response spectrum and acceleration response spectrum, the compressive strength and the coefficient of friction experiments. Also the IRE system is evaluated by environment test according to KS standards. Both the resonance and seismic experiments using a combination of the IRE and Natural Rubber Bearing (NRB) are performed in order to analyze the seismic isolation of the IRE system dynamic characteristics. For the given load and exciting frequency, the resonant frequency becomes lower, but the resonant magnification remains to be same. However, it is shown that when we consider the IRE only, the vibration on the table with the horizontal movement and the independent horizontal displacement due to the rolling motion of the plate and roller are significantly reduced. This result verifies that the proposed optimal design method of the IRE system is very effective.

  • PDF

지진격리장치의 내진성능에 관한 실험적 평가 (Experimental Evaluation of Seismic Performance for Seismic Isolation Bearings)

  • 오주;이재욱;임형주;김형오
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1126-1131
    • /
    • 2010
  • Experimental studies for the high damping rubber bearing, lead rubber bearing and natural rubber bearing, those are often used to improve the seismic capacity if the structure recently, are conducted to evaluate the seismic capacity of the seismic isolation bearings. The shear stiffness of the bearings decrease and the shear strain amplitude or the constant axial load level increase, but not sensitive to the strain rate effect. Bearings are strong for the axial compression but weak for the axial tension.

  • PDF

납고무받침 면진장치와 마찰진자 면진장치에 의한 트러스-아치 구조물의 지진거동 비교 (The Seismic Behavior of the Truss-Arch Structure by Lead Rubber Bearing and Friction Pendulum System with Seismic Isolation)

  • 김기철;석근영;강주원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.374-379
    • /
    • 2008
  • The purpose of seismic isolation system among them is to lengthen the period of structure and make its period shift from the dominant period of earthquake. In this study, the seismic behavior of arch structure with lead rubber bearing(LRB) and friction pendulum system(FPS) is analyzed. The arch structure is the simplest structure and has the basic dynamic characteristics among large spatial structures. Also, Large spatial structures have large vertical response by horizontal seismic vibration, unlike seismic behavior of normal rahmen structures. When horizontal seismic load is applied to the large spatial structure with isolation systems, the horizontal acceleration response of the large spatial structure is reduced and the vertical seismic response is remarkably reduced.

  • PDF

Dynamic assessment of the seismic isolation influence for various aircraft impact loads on the CPR1000 containment

  • Mei, Runyu;Li, Jianbo;Lin, Gao;Zhu, Xiuyun
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1387-1401
    • /
    • 2018
  • An aircraft impact (AI) on a nuclear power plant (NPP) is considered to be a beyond-design-basis event that draws considerable attention in the nuclear field. As some NPPs have already adopted the seismic isolation technology, and there are relevant standards to guide the application of this technology in future NPPs, a new challenge is that nuclear power engineers have to determine a reasonable method for performing AI analysis of base-isolated NPPs. Hence, dynamic influences of the seismic isolation on the vibration and structural damage characteristics of the base-isolated CPR1000 containment are studied under various aircraft loads. Unlike the seismic case, the impact energy of AI is directly impacting on the superstructure. Under the coupled influence of the seismic isolation and the various AI load, the flexible isolation layer weakens the constraint function of the foundation on the superstructure, the results show that the seismic isolation bearings will produce a large horizontal deformation if the AI load is large enough, the acceleration response at the base-mat will also be significantly affected by the different horizontal stiffness of the isolation bearing. These concerns require consideration during the design of the seismic isolation system.

LRB와 슬라이딩베어링을 혼용한 면진시스템을 적용한 아파트 건물의 지진 응답 (Seismic Response of Apartment Building with Base Isolation System Consisting of Sliding-type Bearing and Lend Rubber Bearing)

  • 천영수;윤영호;황기태;장극관
    • 콘크리트학회논문집
    • /
    • 제19권4호
    • /
    • pp.507-514
    • /
    • 2007
  • 이 논문은 기존 내진설계와 비교하여 면진설계의 효용성과 경제적 효과에 대한 연구 결과를 정리한 것이며, 면진설계에 있어서는 납봉삽입적층고무베어링 (LRB)만을 사용한 경우와 비교하여 슬라이딩베어링과 LRB를 혼용한 면진시스템의 내진 거동을 함께 제시하였다. 연구 결과, 면진은 구조물에 대하여 지진동으로 인한 효과를 감소시키는데 매우 효과적이며, 층 가속도의 감소로 사용성을 증가시킬 수 있음이 입증되었다. 또한 층 가속도와 밑면 전단력의 감소라는 관점에서 슬라이딩베어링과 LRB를 혼용한 면진시스템이 LRB만을 사용한 경우보다 더 효과적임을 증명하였다. 하지만 경제적 효과 면에서는 증가된 성능에 비례하여 지불해야만 하는 비용도 커진다는 사실에 특별히 주의할 필요가 있는 것으로 나타났다.