본 연구에서는 인체 상반신영상에서 얼굴부위를 분할하기 위한 영상분할 알고리즘을 제안하였다. 제안한 알고리즘은 HWT를 적용하여 영상의 경계를 이루는 차분영상인 고주파대역과 평균영상인 저주파대역으로 분리하고, 저주파대역에서 고립점과 돌출부위, 경계중복점을 제거하였다. 또한 제안한 경계검출 알고리즘으로 경계를 검출하고 단순화시켰으며, 1픽셀 단위의 세선화과정을 통하여 경계를 선명하게 하였다. 그리고 제안 한 폐곡선추적 알고리즘으로 얼굴부위 경계만을 추출한 뒤, 마스크를 구성하고 원영상과의 정합을 통하여 얼굴부위분할을 하였다. 제안한 알고리즘을 적용하여 얼굴부위 분할실험을 실행한 결과 95.88%의 분할값을 갖는 얼굴분할이 이루어졌다.
Since mobile phones are used as common communication devices, their applications are increasingly important to human's life. Using smart-phones camera to collect daily life environment's information is one of targets for many applications such as text recognition, object recognition or context awareness. Studies have been conducted to provide important information through the recognition of texts, which are artificially or naturally included in images and movies acquired from mobile phones. In this study, a character segmentation method that improves character-recognition accuracy in images obtained from mobile phone cameras is proposed. The proposed method first classifies texts in a given image to printed letters and handwritten letters since segmentation approaches for them are different. For printed letters, rough segmentation process is conducted, then the segmented regions are integrated, deleted, and re-segmented. Segmentation for the handwritten letters is performed after skews are corrected and the characters are classified by integrating them. The experimental result shows our method achieves a successful performance for both printed and handwritten letters as 95.9% and 84.7%, respectively.
Liu, Shenglan;Martin, Ralph R.;Langbein, Frank C.;Rosin, Paul L.
International Journal of CAD/CAM
/
제7권1호
/
pp.31-40
/
2007
Reverse engineering of reliefs aims to turn an existing relief superimposed on an underlying surface into a geometric model which may be applied to a different base surface. Steps in this process include segmenting the relief from the background, and describing it as an offset height field relative to the underlying surface. We have previously considered relief segmentation using a geometric snake. Here, we show how to use this initial segmentation to estimate the background surface lying under the relief, which can be used (i) to refine the segmentation and (ii) to express the relief as an offset field. Our approach fits a B-spline surface patch to the measured background data surrounding the relief, while tension terms ensure this background surface smoothly continues underneath the relief where there are no measured background data points to fit. After making an initial estimate of relief offset height everywhere within the patch, we use a support vector machine to refine the segmentation. Tests demonstrate that this approach can accurately model the background surface where it underlies the relief, providing more accurate segmentation, as well as relief height field estimation. In particular, this approach provides significant improvements for relief concavities with narrow mouths and can segment reliefs with small internal holes.
In Korean medicine, tongue diagnosis is one of the important diagnostic methods for diagnosing abnormalities in the body. Representative features that are used in the tongue diagnosis include color, shape, texture, cracks, and tooth marks. When diagnosing a patient through these features, the diagnosis criteria may be different for each oriental medical doctor, and even the same person may have different diagnosis results depending on time and work environment. In order to overcome this problem, recent studies to automate and standardize tongue diagnosis using machine learning are continuing and the basic process of such a machine learning-based tongue diagnosis system is tongue segmentation. In this paper, image data is augmented based on the main tongue features, and backbones of various famous deep learning architecture models are used for automatic tongue segmentation. The experimental results show that the proposed augmentation technique improves the accuracy of tongue segmentation, and that automatic tongue segmentation can be performed with a high accuracy of 99.12%.
Taeghyun An;Jungyu Kang;Dooseop Choi;Kyoung-Wook Min
ETRI Journal
/
제45권5호
/
pp.822-835
/
2023
Recent semantic segmentation frameworks usually combine low-level and high-level context information to achieve improved performance. In addition, postlevel context information is also considered. In this study, we present a Context ReFinement Network (CRFNet) and its training method to improve the semantic predictions of segmentation models of the encoder-decoder structure. Our study is based on postprocessing, which directly considers the relationship between spatially neighboring pixels of a label map, such as Markov and conditional random fields. CRFNet comprises two modules: a refiner and a combiner that, respectively, refine the context information from the output features of the conventional semantic segmentation network model and combine the refined features with the intermediate features from the decoding process of the segmentation model to produce the final output. To train CRFNet to refine the semantic predictions more accurately, we proposed a sequential training scheme. Using various backbone networks (ENet, ERFNet, and HyperSeg), we extensively evaluated our model on three large-scale, real-world datasets to demonstrate the effectiveness of our approach.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권8호
/
pp.2333-2345
/
2024
Facial wrinkles are widely used to evaluate skin condition or aging for various fields such as skin diagnosis, plastic surgery consultations, and cosmetic recommendations. In order to effectively process facial wrinkles in facial image analysis, accurate wrinkle segmentation is required to identify wrinkled regions. Existing deep learning-based methods have difficulty segmenting fine wrinkles due to insufficient wrinkle data and the imbalance between wrinkle and non-wrinkle data. Therefore, in this paper, we propose a new facial wrinkle segmentation method based on a UNet++ model. Specifically, we construct a new facial wrinkle dataset by manually annotating fine wrinkles across the entire face. We then extract only the skin region from the facial image using a facial landmark point extractor. Lastly, we train the UNet++ model using both dice loss and focal loss to alleviate the class imbalance problem. To validate the effectiveness of the proposed method, we conduct comprehensive experiments using our facial wrinkle dataset. The experimental results showed that the proposed method was superior to the latest wrinkle segmentation method by 9.77%p and 10.04%p in IoU and F1 score, respectively.
의료영상분할은 다양한 의료영상처리를 수행하기에 앞서 먼저 수행되어야 하는 영상처리 기술이다. 그래서 빠르고 정확한 의료영상분할이 요구되고 있으며 다양한 의료영상분할 방법이 연구되고 있다. 의료영상에는 특성이 유사한 다양한 장기가 존재하기 때문에 분할영역의 정확한 판단이 필요하다. 그러나 의료영상은 장기의 일부가 작게 촬영되는 경우가 발생된다. 이 경우에는 분할영역을 판단하기 위한 정보가 부족하게 되며 그 결과 분할과정에서 분할영역이 제거된다. 본 논문에서는 볼륨 데이터와 선형 방정식을 이용하여 작은 영역에서의 분할결과를 개선하였다. 제안한 방법의 성능을 확인하기 위하여 흉부 CT 영상의 폐 분할을 수행하였다. 실험 결과, 의료영상의 분할 정확도는 0.978에서 0.981로 표준편차는 0.281에서 0.187로 개선되는 것을 확인하였다.
생물학자가 단백질을 검색하고 분석하기 위해서는 2차원 젤 전기영동(2DGE : Two Dimensional Gel Electrophoresis) 실험을 해야 한다. 실험 결과는 2차원 영상이 생성된다. 2차원 영상에서 단백질 반점의 패턴 분석을 위해 2차원 젤 영상에 펼쳐진 단백질 반점들을 영상처리를 통해 분할하고, 대조 그룹의 단백질 패턴과 비교분석을 통해 밝히고자하는 단백질 반점을 찾아내야 한다. 단백질 반점을 분할하는 알고리즘에 있어서 기존에는 가우시안 함수를 적용하였지만, 최근 들어 형태학 분리개념에 의한 Watersheds 영역기반 분할(Watersheds region-based segmentation) 알고리즘을 활용하고 있다. 그러나 Watersheds 영역기반 분할 알고리즘은 크기가 큰 영상에서 원하는 영역을 신속하게 분할한다는 장점이 있지만, 영상 화소의 그레이 값이 연속적인 경우 실제 반점의 개수 에 비해 과다분할(over-segmentation)되거나 과소분할(under-segmentation)의 문제점을 안고 있다. 이는 마커(marker) 포인트의 설정에 의해 어느 정도 해결할 수 있지만 병합(merge)과 분할(split) 과정을 반복해야 한다. 본 논문은 Watersheds 기반 계층적 이진화 기법을 적용하여 마커 드리븐 Watersheds 영상분할의 문제점을 해결하고자 한다.
이 논문은 다음과 같은 두가지 요소로 구성되는 독창적인 stereo vision system을 논술한다. declivity라는 새로운 개념을 도입한 자동선택 영상 분할처리 (self-adaptive image segmentation process) 와 자동선택 결정변수 (self-adaptive decision parameters) 를 응용하여 설계된 신속한 stereo matching algorithm. 현재, 실내 image의 depth map을 완성하는데 SUN-IPX 에서 3sec가 소요되나 연구중인 DSP Chip의 조합은 이 시간을 1초 이하로 단축시킬 수 있을 것이다.
In order to specify the location of the scintillation pixel that interacted with gamma rays in the positron emission tomography (PET) detector, conventionally, after acquiring a flood image, the location of interaction between the scintillation pixel and gamma ray could be specified through a pixel-segmentation process. In this study, the experimentally acquired signal was specified as the location of the scintillation pixel directly, without any conversion process, through the simulation data and the deep learning algorithm. To evaluate the accuracy of the specification of the scintillation pixel location through deep learning, a comparative analysis with experimental data through pixel segmentation was performed. In the same way as in the experiment, a detector was configured on the simulation, a model was built using the acquired data through deep learning, and the location was specified by applying the experimental data to the built model. Accuracy was calculated through comparative analysis between the specified location and the location obtained through the segmentation process. As a result, it showed excellent accuracy of about 85 %. When this method is applied to a PET detector, the position of the scintillation pixel of the detector can be specified simply and conveniently, without additional work.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.