• Title/Summary/Keyword: Seepage of dam

Search Result 88, Processing Time 0.03 seconds

A Study on Seepage of the Concrete Dam base (콘크리트댐 저면 침수에 관한 고찰)

  • 정형식;신방웅
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.1
    • /
    • pp.4071-4078
    • /
    • 1976
  • The authors analyzed the seepage by means of the following mathmatical solutions of the Laplace Equations on the given boundary conditions. The boundaries of the flow region are of two types i) impervious boundaries (${\Phi}$=constant), and ii) reservoir boundaries (${\Phi}$=constant). The corresponding w plane, bounding the flow region, is the rectangle in Fig. 8-a. As the z plane and w plane are both polygons, by means of the Schwarz-Christoffel transformation the flow region in each of these planes can be mapped con for mally onto the same half of an auxiliary t plane, there by yielding, say, the functions z=f1(t) and w=f2(t). Then, either by eliminating the variable t or by using t as a parameter, the function w=f(z) can be established.

  • PDF

Behavior of Fill Dam Subjected to Continuous Water Level Change and Overflow (지속적 수위변동 및 월류에 따른 저수지 제체의 거동 연구)

  • Lee, Chungwon;Maeng, Youngsu;Kim, Yongseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.6
    • /
    • pp.41-48
    • /
    • 2014
  • In this study, the behavior of fill dam with continuous water level change considering velocity changes via centrifugal model test was investigated. In addition, the collapse of fill dam due to the overflow was also experimentally simulated. The experimental results demonstrate that the pore water pressures and displacements vary in proportion to the water-level-change velocity, and the displacement increment is independent to the water-level-change velocity. Also, it is confirmed that the continuous water level change induces to the progress of fill-dam deformation due to displacement accumulation and the fill-dam stability dramatically degrades owing to the overflow. Hence, the real-time monitoring of pore water pressures and displacements of fill dam, and the control of water level in heavy rain through the countermeasure such as opening sluice gates are needed to ensure the stability of fill dam.

Comparison of Seepage Quantity Calculated by Experiments and Finite Element Method (실험(實驗)과 FEM기법(技法)을 사용(使用)하여 구(求)한 침투유량(浸透流量)의 비교(比較))

  • Jin, Byung Ik;Kim, Jae Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.83-90
    • /
    • 1985
  • The thesis is established on the basis of model tests on the central core dam. With variations in the upstream water level, the quantity of seepage in the downstream boundaries were obtained for each specific water level. Seepage alignment and equipotential lines to these occasions were also researched and measured. By making use of the resulting data from the experiment, the flow velocities and seepage quantity computed to the flow rate of each element of flownets by the Finite Element Method was compared with the values produced by experiments and approximate theoretical formula. Further to this, transitions of water level related thereto was also examined in the thesis. During the high water level, seepages shown by the experiment were larger than that of the F.E.M. Meanwhile, the in-between differences were found to be quite small during the low water level. In the flow rate of each element with which the flow-nets are constructed, flow velocities of the X and Z axis were faster on account of the variations in water level. Flow velocities of the Y axis were extremely small enough to be disregarded.

  • PDF

A Study on the Slope Stability Analysis (사면(斜面)의 안정해석(安定解析)에 관(關)한 연구(硏究))

  • Kang, Yea Mook;Cho, Seung Seup
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.2
    • /
    • pp.179-184
    • /
    • 1981
  • This paper has been prepared to compare the safety factor of Fellenius method and Bishop method which are most frequantly utilized for stability analysis of dam and natural slope. The results are as follows. 1. Safety factor obtained by Bishop method shows 11-29% higher in steady seepage state and 46-57% higher in no seepage flow than the one by Fellenius. 2. The ratio of safety factor between no seepage flow and seepage flow ($F_1-F_2/F_2$) increases as the slope becomes flatter. 3. The ratio of safety factor between Bishop method and Fellenius ($F_B-F_F/F_F$) decreases as the slope becomes flatter.

  • PDF

Assessment of The Priority Order of Monitoring Devices on Maintenance for The Long-Term Safety of Existing Fill Dam (기존 필댐 장기간 안전관리를 위한 계측항목 유지보수 우선순위 산정)

  • Lee, Jongwook;Jeon, Jaesung;Lim, Heuidae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.67-79
    • /
    • 2009
  • Although readjustment of monitoring system for existing fill dam maintenance is needed by the sustainable increasing of the abandonment rate of monitoring devices by malfunction through the life-cycle of dam, monitoring plans for long-term dam safety has relied on the experience and the opinion of minor expert group without systematic and quantitative analysis on the failure modes and the priority order of monitoring devices on maintenance. In this study the priority order of monitoring devices of existing 5 fill dams was evaluated quantitatively based on the preceding study (Andersen et al, 1999) and the result recommended the establishment of real-time monitoring system for seepage, pore pressure and crest settlement as the readjustment plan for existing fill dam monitoring system. This readjustment plan matches well with the recommendation of PWRI (1984), JCOLD (1986) and the results from Bagherzadeh-Khakkahali and Mirghasemi (2005).

  • PDF

A Case study of steel sheet pile (강널말뚝을 이용한 국내.외 시공 사례)

  • 여병철;김광일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.111-118
    • /
    • 1994
  • The use of steel sheet pile walls as barrier walls have the temporary for coffer dam, retaining wall in excavation, etc., but also permanent of semi-permanent for harbor construction, containment systems, vertical barrier systems for waste disposal (landfill) or subway in excavarion. In all these applicaions the resistance of the structure to seepage plays an important role. Also the stability and longevity of the construction, the possibility of permanent control and survey make the steel sheet pile wall a nearly perfect vertical barrier from a technical and economical point of view.

  • PDF

필댐 기초지반에서 유한요소 모델을 이용한 그라우트 커덴의 적정심도 연구

  • 김진희;윤정한
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.265-268
    • /
    • 2003
  • 댐(dam)의 기초지반에 시공되는 그라우트 커텐(grout curtain)은 댐 축조 후 기초지반을 통한 침투류를 차단하기 위하여 시행되며, 콘크리트 댐, 흙 댐, 사력 댐 등의 공학적 차이에 따라서 그 시공 위치 및 심도, 폭 등이 다르게 적용된다. 그라우트 커텐(grout curtain)의 설계ㆍ시공 요소는 기초지반의 투수성, 댐 내의 수심, 제체 성토재료의 투수성, 그라우트 커텐의 투수성 등에 의하여 결정되며, 설계 시공 요소들은 그라우팅 커텐의 길이, 폭, 투수도 등이다. (중략)

  • PDF

Risk Assessment of Levee Embankment Integrated Erosion and Seepage Failure Factor (침식과 침투영향을 고려한 하천제방의 위험도 평가)

  • Ahn, Ki-Hong;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.8
    • /
    • pp.591-605
    • /
    • 2009
  • In this study the risk integrated erosion and seepage failure factor and combined risk of the levee embankment were assessed. For the research of the reliability, the risk assessment of erosion, seepage and both of them combined for the levee embankment were conducted using discharge curve and stage hydrograph generated by stochastic rainfall variation method during typhoon and monsoon season. The risk of erosion was evaluated using tractive force and the seepage analysis was performed by selecting representative cross sections for SEEP/W model analysis. And the probability of seepage failure was assessed with MFOSM analysis using critical hydraulic gradient method. Unlike deterministic analysis method, quantitative risk could be obtained and the characteristics of realistic rainfall variation patterns as well as a variety of factors contributing to levee failure could be reflected in this research. The results of this study show significantly enhanced applicability for the combined risk. As this model can be employed to determine dangerous spots for levee failure and to establish flood insurance linked with flood risk map, it will dramatically contribute to the establishment of both efficient and systematic measures for integrated flood management on a watershed.

Interaction between Groundwater and Surface Water in Urban Area (도시지역의 지하수와 하천수의 교류량)

  • Bae, Sang-Keun;Lee, Seung-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.9
    • /
    • pp.919-927
    • /
    • 2008
  • Flow exchanges between stream and groundwater are assessed on urban streams in Daegu, Korea. Two rivers and 25 streams with the total length of 240 km run through the study area. The interaction between surface water and groundwater was estimated using Darcy's method. The study was conducted by dividing the basin into 16 smaller watersheds, and for comparison purposes. Groundwater level, surface water level, hydraulic conductivity, thickness of aquifer, and the distance between the well and the nearest stream were used for quantifying the interaction. To investigations the groundwater interaction in the watersheds, the amount of effluent seepage from groundwater to the stream, the amount of influent seepage from the stream to groundwater, and the amount of annual interaction between surface water and groundwater were computed. The total amount of effluent seepage from the groundwater to stream in the basin was approximately $72{\times}10^6m^3/year$. The total amount of influent seepage from the stream to groundwater was approximately $35{\times}10^6m^3/year$. It appeared that the total amount of annual interaction between surface water and groundwater was approximately $108{\times}10^6m^3/year$ and the total groundwater flow balance was approximately $37{\times}10^6m^3/year$. The annual amount of interaction between the surface water and groundwater was the largest in the Goryung Bridge Basin($29{\times}10^6m^3/year$) and the least in the Dalchang Dam Basin($0.2{\times}10^6m^3/year$). The results show that flow exchanges between stream and groundwater are very active and that there are significant difference among the smaller watersheds. Finally, the results indicate that it is necessary to further investigate to more precisely understand the interaction characteristics between surface water and groundwater in urban areas.

Risk Analysis Method for Deriving Priorities for Detailed Inspection of Small and Medium-sized Fill Dam (중소형 필댐의 정밀점검 우선순위 도출을 위한 간이 위험도 분석 방법)

  • Kim, Jinyoung;Kang, Jaemo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.10
    • /
    • pp.11-16
    • /
    • 2020
  • Korea's agricultural reservoir is one of the country's major infrastructures and plays an important role in people's lives. However, aging reservoirs are a risk for life and property. Currently, large and small dams and reservoirs have been constructed nationwide for more than 40 years of aging. Dams and reservoirs built nationwide are managed by various institutions. Therefore, it is difficult to manage all dams and reservoirs due to cost and time. Managers in the field with less management personnel and lack of expertise should be able to quickly identify risk factors for multiple reservoirs. In this study, risk factors such as seepage, leakage, settlement slide, crack and erosion were selected. To assess the risk of the items, we used the analytical hierarchical process (AHP), one of the Multi-Criteria Decision Making (MCDM) methods. The analysis showed that seepage has the greatest impact on reservoir collapse. It is judged that the priority of detailed diagnosis can be determined by evaluating the risk of dam reservoir collapse in a convenient way in advance using the calculated weight.