• Title/Summary/Keyword: Seed Layer

Search Result 468, Processing Time 0.029 seconds

High-sensitivity ZnO gas Sensor with a Sol-gel-processed SnO2 Seed Layer (Sol-Gel 방법으로 제작된 SnO2 seed layer를 적용한 고반응성 ZnO 가스 센서)

  • Kim, Sangwoo;Bak, So-Young;Han, Tae Hee;Lee, Se-Hyeong;Han, Ye-ji;Yi, Moonsuk
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.420-426
    • /
    • 2020
  • A metal oxide semiconductor gas sensor is operated by measuring the changes in resistance that occur on the surface of nanostructures for gas detection. ZnO, which is an n-type metal oxide semiconductor, is widely used as a gas sensor material owing to its high sensitivity. Various ZnO nanostructures in gas sensors have been studied with the aim of improving surface reactions. In the present study, the sol-gel and vapor phase growth techniques were used to fabricate nanostructures to improve the sensitivity, response, and recovery rate for gas sensing. The sol-gel method was used to synthesize SnO2 nanoparticles, which were used as the seed layer. The nanoparticles size was controlled by regulating the process parameters of the solution, such as the pH of the solution, the type and amount of solvent. As a result, the SnO2 seed layer suppressed the aggregation of the nanostructures, thereby interrupting gas diffusion. The ZnO nanostructures with a sol-gel processed SnO2 seed layer had larger specific surface area and high sensitivity. The gas response and recovery rate were 1-7 min faster than the gas sensor without the sol-gel process. The gas response increased 4-24 times compared to that of the gas sensor without the sol-gel method.

Formation of Copper Seed Layers and Copper Via Filling with Various Additives (Copper Seed Layer 형성 및 도금 첨가제에 따른 Copper Via Filling)

  • Lee, Hyun-Ju;Ji, Chang-Wook;Woo, Sung-Min;Choi, Man-Ho;Hwang, Yoon-Hwae;Lee, Jae-Ho;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.335-341
    • /
    • 2012
  • Recently, the demand for the miniaturization of printed circuit boards has been increasing, as electronic devices have been sharply downsized. Conventional multi-layered PCBs are limited in terms their use with higher packaging densities. Therefore, a build-up process has been adopted as a new multi-layered PCB manufacturing process. In this process, via-holes are used to connect each conductive layer. After the connection of the interlayers created by electro copper plating, the via-holes are filled with a conductive paste. In this study, a desmear treatment, electroless plating and electroplating were carried out to investigate the optimum processing conditions for Cu via filling on a PCB. The desmear treatment involved swelling, etching, reduction, and an acid dip. A seed layer was formed on the via surface by electroless Cu plating. For Cu via filling, the electroplating of Cu from an acid sulfate bath containing typical additives such as PEG(polyethylene glycol), chloride ions, bis-(3-sodiumsulfopropyl disulfide) (SPS), and Janus Green B(JGB) was carried out. The desmear treatment clearly removes laser drilling residue and improves the surface roughness, which is necessary to ensure good adhesion of the Cu. A homogeneous and thick Cu seed layer was deposited on the samples after the desmear treatment. The 2,2'-Dipyridyl additive significantly improves the seed layer quality. SPS, PEG, and JGB additives are necessary to ensure defect-free bottom-up super filling.

Characteristics of Electroplated Ni Thick Film on the PN Junction Semiconductor for Beta-voltaic Battery (베타전지용 PN 접합 반도체 표면에 도금된 Ni 후막의 특성)

  • Kim, Jin Joo;Uhm, Young Rang;Park, Keun Young;Son, Kwang Jae
    • Journal of Radiation Industry
    • /
    • v.8 no.3
    • /
    • pp.141-146
    • /
    • 2014
  • Nickel (Ni) electroplating was implemented by using a metal Ni powder in order to establish a $^{63}Ni$ plating condition on the PN junction semiconductor needed for production of beta-voltaic battery. PN junction semiconductors with a Ni seed layer of 500 and $1000{\AA}$ were coated with Ni at current density from 10 to $50mA\;cm^{-2}$. The surface roughness and average grain size of Ni deposits were investigated by XRD and SEM techniques. The roughness of Ni deposit was increased as the current density was increased, and decreased as the thickness of Ni seed layer was increased. The results showed that the optimum surface shape was obtained at a current density of $10mA\;cm^{-2}$ in seed layer with thickness of $500{\AA}$, $20mA\;cm^{-2}$ of $1000{\AA}$. Also, pure Ni deposit was well coated on a PN junction semiconductor without any oxide forms. Using the line width of (111) in XRD peak, the average grain size of the Ni thick firm was measured. The results showed that the average grain size was increased as the thickness of seed layer was increased.

Effect of Seed-layer thickness on the Crystallization and Electric Properties of SBN Thin Films. (SBN 박막의 결정화 및 전기적 특성에 관한 씨앗층 두께의 영향)

  • Jang, Jae-Hoon;Lee, Dong-Gun;Lee, Hee-Young;Cho, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.271-274
    • /
    • 2003
  • [ $Sr_xBa_{1-x}Nb_2O_6$ ] (SBN, $0.25{\leq}x{\leq}0.75$) ceramic is a ferroelectric material with tetragonal tungsten bronze (TTB) type structure, which has a high pyroelectric coefficient and a nonlinear electro-optic coefficient value. In spite of its advantages, SBN has not been investigated well compared to other ferroelectric materials with perovskite structure. In this study, SBN thin film was manufactured by ion beam sputtering technique using the prepared SBN target in $Ar/O_2$ atmosphere. SBN30 thin films of different thickness were pre-deposited as a seed layer on $Pt(100)/TiO_2/SiO_2/Si$ substrate followed by SBN60 deposition up to $4500\;{\AA}$ in thickness. As-deposited SBN60/SBN30 layer was heat-treated at different temperatures of 650, 700, 750, and $800\;^{\circ}C$ in air, respectively, The crystallinity and orientation behavior as well as electric properties of SBN60/SBN30 multi-layer were examined. The deposited layer was uniform and the orientation was shown primarily along (001) plane from XRD pattern. There was difference in the crystal structure with heat-treatment temperature, and the electric properties depended on the heating temperature and the seed-layer thickness. In electric properties of Pt/SBN60/SBN30/Pt thin film capacitor prepared, the remnant polarization (2Pr) value was $15\;{\mu}C/cm^2$, the coercive field (Ec) 65 kV/cm, and the dielectric constant 1492, respectively.

  • PDF

Field Emission Property of ZnO Nanowire with Nanocone Shape (나노뿔 형태로 제작된 ZnO 나노선의 전계방출 특성)

  • No, Im-Jun;Shin, Paik-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.590-594
    • /
    • 2012
  • ZnO nanowires were fabricated by hydrothermal synthesis technique for field emission device application. Al-doped zinc oxide (AZO) thin films were prepared as seed layer of catalyst for the ZnO nanowire synthesis, for which conductivity of the seed layer was tried to be improved for enhancing the field emission property of the ZnO nanowire. The AZO seed layer revealed specific resistivity of $ 7.466{\times}10^{-4}[{\Omega}{\cdot}cm]$ and carrier mobility of 18.6[$cm^2$/Vs]. Additionally, upper tip of the prepared ZnO nanowires was treated by hydrochloric acid (HCl) to form a nanocone shape of ZnO nanowire, which was aimed for enhanced focusing of electric field on that and resultingly to improve field emission property of the ZnO nanowires. The ZnO nanowire with nanocone shape revealed decreased threshold electric field and increased current density than those of the simple ZnO nanowires.

Influence of Silicon and Seed Particles on the Reconstruction Characteristics and Exaggerated Grain Growth of MgO Protective Layer by Over-Frequency Accelerated Discharge in ACPDPs

  • Kwon, Sang-Koo;Kim, Jeong-Ho;Moon, Seung-Kyu;Choi, Jong-Kwon;Park, Kyu-Ho;Han, Sung-Su
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.957-960
    • /
    • 2008
  • The influences of silicon and MgO seed particle on the reconstruction characteristics of MgO protective layer were investigated to clarify the mechanism of reconstruction and exaggerated grain growth (EGG) in AC-PDP. The reconstruction and EGG are closely correlated with the driving force for nucleation and growth, interface energy and initial size distribution of MgO protective layer in plasma space during discharge in AC-PDP.

  • PDF

The Electrochemical Migration Phenomenon of the Ni-Cr Seed Layer of Sputtered FCCL

  • Ahn, Woo-Young;Jang, Joong Soon
    • Journal of Surface Science and Engineering
    • /
    • v.47 no.2
    • /
    • pp.63-67
    • /
    • 2014
  • As the demand for fine-pitch FPCB (Flexible Printed Circuit Board) increases, so do the number of applications of sputtered FCCL (Flexible Copper Clad Laminate). Furthermore, as the width between the circuit patterns decreases, greater defects are observed in the migration phenomenon. In this study we observed changes in ion migration in real circuit-pattern width using sputtered FCCL. We found that as the applied voltage and residue thickness of the NiCr seeds increase, ion migration occurs faster. If the NiCr seed layer thickens due to a high cathode power and long deposition time while being sputtered, the NiCr will form a residue that quickly becomes a factor for incurring ion migration.

표면에너지 영향에 따른 ZnO 나노와이어의 형태변화

  • No, Im-Jun;Kim, Seong-Hyeon;Sin, Baek-Gyun;Jo, Jin-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.64-64
    • /
    • 2010
  • ZnO 나노와이어를 수열합성법에 의하여 합성 하였다. 나노와이어 합성을 위한 Seed layer는 Al 이 2% 도핑된 ZnO타겟을 이용하여 스퍼터링 공정을 통해 증착시켰다. 이 Seed layer박막을 대기압 플라즈마 공정을 통하여 친수처리와 소수처리를 한 후 접촉각을 측정 하여 표면에너지를 관찰하였다. 또한 각각의 표면에너지에 의한 ZnO 나노와이어 합성결과 ZnO 나노와이어의 밀도, 직경, 길이가 표면에너지와 밀접한 관련이 있다는 것을 확인 하였다. 결과적으로 수열합성법에 의해 성장된 나노와이어는 Seed layer의 표면에너지에 큰 영향을 받는 것을 확인하였고 이것은 향후 연구에서 나노 구조체 전반에 밀도, 직경, 길이를 조절할 수 있는 핵심 기술임을 제시한다.

  • PDF

Localization and Function of Cellulase in Endosperm Cells of Panax ginseng Seeds during Maturation and After-ripening (인삼 종자의 성숙과 후숙 과정에서 배유세포내 섬유소 가수분해효소의 분포 및 기능)

  • 유성철
    • Journal of Plant Biology
    • /
    • v.36 no.4
    • /
    • pp.327-335
    • /
    • 1993
  • The active sites, intracellular transport, function of cellulase in association with the disintegration of the storage materials of the endosperm cells during seed maturation and after-ripening of Panax ginseng C.A. Meyer seeds were studied by electron microscopy. Cytochemical activities of the cellulase occurred in protein bodies and vesicles of endosperm cells in seed with red seed coat. In after-ripening seed, the activities were strongly found in the cell wall of endosperm near the umbiliform layer and on neighbouring vesicles, so it is assumed that these cells begin to be decomposed. Cellulase activities were initiated before the decomposition of storage materials. But, no activity was observed in the umbiliform layer, so it is suggested that cellulase lose its activity after the completion of lysis process.

  • PDF

Prosopis juliflora invasion and environmental factors on density of soil seed bank in Afar Region, Northeast Ethiopia

  • Shiferaw, Wakshum;Bekele, Tamrat;Demissew, Sebsebe;Aynekulu, Ermias
    • Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.400-420
    • /
    • 2019
  • The aims of the study were to analyze (1) the effects of Prosopis juliflora (Prosopis) on the spatial distribution and soil seed banks (SSB) diversity and density, (2) the effects of environmental factors on SSB diversity and density (number of seeds in the soil per unit area), and (3) the effects of animal fecal droppings on SSB diversity, density, and dispersal. Aboveground vegetation data were collected from different Prosopis-infested habitats from quadrats (20 × 20 m) in Prosopis thickets, Prosopis + native species stand, non-invaded woodlands, and open grazing lands. In each Prosopis-infested habitats, soil samples were collected from the litter layer and three successive soil layer, i.e., 0-3 cm, 3-6 cm, and 6-9 cm. Seeds from soil samples and animal fecal matter were separated in the green house using the seedling emergence technique. Invasion of Prosopis had significant effects on the soil seed bank diversity. Results revealed that the mean value of the Shannon diversity of non-invaded woodlands was being higher by 19.2%, 18.5%, and 11.0% than Prosopis thickets; Prosopis + native species stand and open grazing lands, respectively. The seed diversity and richness, recovered from 6-9-cm-deep layer were the highest. On the other hand, the density of Prosopis seeds was the highest in the litter layer. About 156 of seeds/kg (92.9%) of seeds were germinated from cattle fecal matter. However, in a small proportion of seedlings, 12 of seeds/kg (7.1%) were germinated from shot fecal matter. Thus, as the seeds in the soil were low in the study areas, in situ and ex situ conservation of original plants and reseeding of persistent grass species such as Cynodon dactylon, Cenchrus ciliaris, Chrysopogon plumulosus, and Brachiaria ramosa are recommended.