DOI QR코드

DOI QR Code

The Electrochemical Migration Phenomenon of the Ni-Cr Seed Layer of Sputtered FCCL

  • Received : 2014.02.13
  • Accepted : 2014.04.01
  • Published : 2014.04.30

Abstract

As the demand for fine-pitch FPCB (Flexible Printed Circuit Board) increases, so do the number of applications of sputtered FCCL (Flexible Copper Clad Laminate). Furthermore, as the width between the circuit patterns decreases, greater defects are observed in the migration phenomenon. In this study we observed changes in ion migration in real circuit-pattern width using sputtered FCCL. We found that as the applied voltage and residue thickness of the NiCr seeds increase, ion migration occurs faster. If the NiCr seed layer thickens due to a high cathode power and long deposition time while being sputtered, the NiCr will form a residue that quickly becomes a factor for incurring ion migration.

Keywords

References

  1. X. Zhong, X. Guo, Corrosion Sci., 74 (2013) 71. https://doi.org/10.1016/j.corsci.2013.04.015
  2. H. He, F. Guo, Electron. Mater. Lett., 8 (2012) 463. https://doi.org/10.1007/s13391-012-2019-9
  3. T. G. Woo, K. W. Seol, Electron. Mater. Lett., 8 (2012) 151. https://doi.org/10.1007/s13391-012-1075-5
  4. N. B. Aguilera, A. Bossche, IEEE Transactions on Device and Materials. Reliability, 13 (2013) 1. https://doi.org/10.1109/TDMR.2012.2234460
  5. D. Konno, N. Yoshimura, IEEJ Transactions on Fundamentals and Materials, 133 (2013) 153. https://doi.org/10.1541/ieejfms.133.153
  6. X. He, M. G. Pecht, IPC APEX EXPO Technical Conference (2012).
  7. J. B. Chyi, G. S. Shen, Packaging, Assembly, & Circuit Technology Conference, ISBN 978-1-4577-1388-0.
  8. H. Li, H. Hanna, Wuhan University Journal of Natural Sciences, 17 (2012) 79. https://doi.org/10.1007/s11859-012-0808-5
  9. V. V. R. Nandigana, N. R. Aluru, Electrochimica Acta, 105 (2013) 514. https://doi.org/10.1016/j.electacta.2013.05.011
  10. H. Huang, Z. Dong, Corrosion Science, 53 (2011) 3446. https://doi.org/10.1016/j.corsci.2011.04.017
  11. B. I. Noh, S. B. Jung, Mater Electron., 19 (2008) 952. https://doi.org/10.1007/s10854-007-9421-3
  12. B. Li, D. Badami, Microelectronics Reliability, 44 (2004) 365. https://doi.org/10.1016/j.microrel.2003.11.004
  13. M. A. Hussain, F. M. Khoshnaw, IEEE 9th VLSI Packaging Workshop of Japan, 12 (2008) 105.
  14. Y. Heng Chen, M. Hsiao, 19th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits, 7 (2012) 1.
  15. Konno, Dai, Denki Gakkai Ronbunshi, A Kiso zairy A, 133 (2013) 153.
  16. X. He, M. G. Pecht, IPC APEX EXPO Technical Conference, (2010) 1297.
  17. K. Mitobe, Denki Gakkai Ronbunshi. A, Kiso zairyA. 127 (2007) 335.
  18. D. B. Lee, D. S. Yu, Journal of the Korean Society for Precision Engineering, 9 (2005) 64.
  19. D. B. Lee, D. S. Yu, Korean Society for Precision Engineering Meeting (2004) 180.
  20. "IPC-TM 650 2.6.13 Test Method Manual," Assessment of Susceptibility to Metallic Dendritic Growth. 2215 Sanders Road Northbook, IL 60062-6135.