• Title/Summary/Keyword: Sedimentation velocity

Search Result 124, Processing Time 0.031 seconds

Evaluation of the Effects of the Longitudinal Baffle on Settling Efficiency within Rectangular-shaped Sedimentation Basin (장방형 침전지내 도류벽의 침전효율에 대한 영향 평가)

  • Park, No-Suk;Kim, Seong-Su;Seo, In-Seok;Min, Kyong-En
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.573-581
    • /
    • 2009
  • In the case that the average velocity within rectangular-shaped sedimentation basin is less than 1.5cm/sec, and Froude number less than $10^{-6}$, it can not be expected that the longitudinal baffle improves the sedimentation efficiency. Also, since relatively lower velocity increases the effect of geostrophic body force, asymmetric flow pattern on a plane occurs within the basin. From the results of CFD (Computational Fluid Dynamics) simulation, in the case that the highest velocity within rectangular-shaped sedimentation basin is over 1.5cm/sec, and Froude number over $10^{-6}$, it can be expected that the longitudinal baffle installed within rectangular-shaped sedimentation basin improves the sedimentation efficiency.

The Effect of Open Ratio of the Inlet Baffle on Hydraulic Behavior within a Rectangular Sedimentation Basin (장방형 침전지 유입 정류벽 유공비의 지내 수리거동에 미치는 영향 연구)

  • Park, No-Suk;Kim, Seong-Su;Lim, Sung-Eun;Lee, Doo-Jin;Seo, In-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.3
    • /
    • pp.345-352
    • /
    • 2009
  • The purpose of inlet baffle is to distribute the flow uniformly over the entire cross-sectional area of the sedimentation basin. The goal when designing this baffle is to achieve some head loss while keeping the velocity gradients through the ports equal to the velocity gradient in the end of the flocculator, so as to not break up the flocs. Sedimentation tank performance is strongly influenced by hydrodynamic and physical effects such as inlet design. This study was conducted to evaluate the effect of open ratio of the inlet baffle on hydraulic behavior within a rectangular sedimentation basin using CFD simulation and ADV technique. In order to verify the CFD simulation, we measured the factual velocity at 18 points in the full-scale sedimentation basin at Y water treatment plant. Good agreement was obtained between the CFD predictions and the experimentally measured data. From the simulation results of the existing basin with 7.4 % open ratio, it was investigated that extreme decrease in velocity occurred in the middle of basin. Since then, flow features was unstable. The region which the velocity decrease rapidly moved forward to the flow direction in proportion to the increase of inflow velocity. Also, it was investigated that the flow characteristic of 6.0 % open ratio was significantly different from 7.4 % open ratio at the same configuration condition. These results are a clear indication that inflow momentum and open ratio are the parameters affecting the characteristics of hydraulic patterns. The influence of these parameters on the sedimentation performance requires further study.

Settling Velocity of Suspended Material in Nakdong River (낙동강 수계에서 부유물질 침강속도)

  • Joe, Gyu-Soo;Seong, Jin-Uk;Park, Je-Chul
    • Journal of Environmental Science International
    • /
    • v.20 no.12
    • /
    • pp.1533-1540
    • /
    • 2011
  • This study was conducted to identify the sedimentation quantity and settling velocity, sediment fundamental data that an important position of water quality management of Seston, POC, PP and PN in Nakdong river basin using a sediment traps to collect suspended material pollutants. Nakdong river basin is that average sedimentation quantity of seston, POC, PP and PN were 124~1,125 g/$m^2$/d, 2,963~25,072, 26~347, 445~2,184 mg/$m^2$/d, respectively. Settling velocity of Seston, POC, PP and PN were 17.0, 35.5, 8.7, 2.4 m/d. It was appeared that various results according to the river flow, weather and other environmental factors. There was no significant correlation, each suspended material pollutants. Sedimentation rates are likely to be overestimated because the flow is not considered to resuspended materials. Therefore diversification through continued monitoring is needed to be analyzed.

A study of sedimentation processes in Seamangeum coastal area (새만금지구의 퇴적과정에 관한 연구)

  • Sin Mun-Seop;Yu Cheol-Ung;Kim Ik-Jung
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.73-76
    • /
    • 1997
  • The purpose of this study is to find sedimentation patterns variation in Saemangeum coastal sea region. Water circulations are calculated diagnostically from the observed water temperature and salinity data and wind data and tidal residual current. Three dimensional movements of injected particles due In currents, turbulence and sinking velocity are tracked by the Euler-lagrange method. Calculated sedimentation patterns of riverine material are highly similar to the observed ones.

  • PDF

A Study on Prediction of Sedimentation Efficiency for Sedimentation Basin using Lagrangian Method (침전지의 유동 특성과 Lagrangian Method를 이용한 침전효율 예측에 관한 연구)

  • Choi, Jong-Woong;Hong, Sung-Taek;Kim, Seong-Su;Kim, Youn-Kwon;Park, No-Suk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.229-236
    • /
    • 2017
  • Flow characteristics analysis and tracer test simulations for the rectangular typed sedimentation basins, which have been operated at D_water treatment plant in Korea, were carried out using CFD (Computational Fluid Dynamics) techniques for design ($15,864m^3/day$) and operation flowrate ($33,333m^3/day$). Also, each efficiency of the sedimentation basin was evaluated by application of the Lagrangin technique on the assumption of the particles flowing into the inlet of the sedimentation basin. From the results of simulation, the mean velocity values for making the flow in the settling basin as a plug flow region were derived as 0.00193 m/s and 0.00417 m/s, respectively. In addition, ${\beta}$ (effective contact factor) values were calculated to be 0.51 and 0.46, and the Morrill Index values were 6.05 and 3.21, respectively for both flowrate conditions.

A study of sedimentation processes in Dongjin and the Mankyung rivers esturay (만경강과 동진강 하구의 퇴적과정에 관한 연구)

  • 신문섭
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.143-148
    • /
    • 1999
  • The purpose of this study is to find sedimentation patterns variation before and after Saemangeum reclamation. Water circulations are calculated diagnostically from the observed water temperature and salinity data and wind data and tidal residual current. Three dimensional movements of injected particles due to currents, turbulence and sinking velocity are tracked by the Euler-lagrange methoed. Calculated sedimentation patterns of riverine material are highly similar to the observed ones.

  • PDF

A combined sewer design method using tractive force considering wastewater flow on non-rainy days and its application for improvement methods of sewer (청천시 오수량을 고려한 합류식 하수도 소류력 설계법과 이를 활용한 하수관거 개보수방안)

  • Ji, Hyon Wook;Yoo, Sung Soo;Song, Homyeon;Kang, Jeong-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.3
    • /
    • pp.211-220
    • /
    • 2020
  • When domestic sewage and rainwater runoff are discharged into a single sewer pipe, it is called a "combined sewer system." The sewage design standards in Korea specify the flow velocity based only on the volume of rainfall; therefore, sedimentation occurs on non-rainy days owing to the reduced flow rate and velocity. This sedimentation reduces the discharge capacity, causes unpleasant odors, and exacerbates the problem of combined sewer overflow concentration. To address this problem, the amount of sewage on non-rainy days, not just the volume of rainfall, should also be considered. There are various theories on sedimentation in sewer movement. This study introduces a self-cleansing velocity based on tractive force theory. By applying a self-cleansing velocity equivalent to the critical shear stress of a sand particle, sedimentation can be reduced on non-rainy days. The amount of sewage changes according to the water use pattern of citizens. The design hourly maximum wastewater flow was considered as a representative value, and the velocity of this flow should be more than the self-cleansing velocity. This design method requires a steeper gradient than existing design criteria. Therefore, the existing sewer pipelines need to be improved and repaired accordingly. In this study, five types of improvement and repair methods that can maximize the use of existing pipelines and minimize the depth of excavation are proposed. The key technologies utilized are trenchless sewer rehabilitation and complex cross-section pipes. Trenchless sewer rehabilitation is a popular sewage repair method. However, it is complex because the cross-section pipes do not have a universal design and require continuous research and development. In an old metropolis with a combined sewer system, it is difficult to carry out excavation work; hence, the methods presented in this study may be useful in the future.

A Case Study of Sediment Transport on the Seabed due to Wave and Current Velocities

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.3
    • /
    • pp.99-111
    • /
    • 2016
  • Seabed affected by scouring, sedimentation, and siltation occurrences often cause exposure, which induces risks to existing structures or crude oil or gas pipeline buried subsea. In order to prevent possible risks, more economical structure installation methodology is proposed in this study by predicting and managing the risk. Also, the seabed does not only consist of sandy material, but clayey soil is also widespread, and the effect of undrained shear strength should be considered, and by cyclic environmental load, pore water pressure will occur in the seabed, which reduces shear strength and allows particles to move easily. Based on previous research regarding sedimentation or erosion, the average value of external environmental loads should be applied; for scouring, a 100-year period of environmental conditions should be applied. Also, sedimentation and erosion are mainly categorized by the bed load and suspended load; also, they are calculated as the sum of bed load and suspended load, which can be obtained from the movement of particles caused by sedimentation or erosion.

Recent Advances in Sedimentation and River Mechanics

  • Pierre Julien
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05a
    • /
    • pp.3-16
    • /
    • 2002
  • This article describes some of the recent and on-going research developments of the author at Colorado State University. Advances in the field of sedimentation and river mechanics include basic research and computer modeling on several topics. Only a few selected topics are considered here: (1) analytical determination of velocity profiles, shear stress and sediment concentration profiles in smooth open channels; (2) experiments on bedload particle velocity in smooth and rough channels; (3) field measurements of sediment transport by size fractions in curved flumes. In terms of computer modeling, significant advances have been achieved in: (1) flashflood simulation with raster-based GIOS and radar precipitation data; and (2) physically-based computer modeling of sediment transport at the watershed scale with CASC2D-SED. Field applications, measurements and analysis of hydraulic geometry and sediment transport has been applied to: (1) gravel-bed transport measurements in a cobble-bed stream at Little Granite Creek, Wyoming; (2) sand and gravel transport by size fraction in the sharp meander bends of Fall River, Colorado; (3) changes in sand dune geometry and resistance to flow during major floods of the Rhine River in the Netherlands; (4) changes in hydraulic geometry of the Rio Grande downstream of Cochiti Dam, New Mexico; and (5) analysis of the influence of water temperature and the Coriolis force on flow velocity and sediment transport of the Lower Mississippi River in Louisiana. Recent developments also include two textbooks on "Erosion and Sedimentation" and "River Mechanics" by the author and state-of-the-art papers in the ASCE Journal of Hydraulic Engineering.

  • PDF

Analysis of Liquefied Layer Activities Considering Erosion and Sedimentation of Debris Flow (토석류의 침식 및 퇴적을 고려한 유동층의 거동 분석)

  • Kim, Sungduk;Lee, Hojin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.4
    • /
    • pp.23-29
    • /
    • 2019
  • Heavy rainfall is in causing debris flow by recent climate change and causes much damage in the downstream. The debris flow from the mountainous area runs to the downstream, repeating sedimentation and erosion, and appears as a fluidized soil-water mixture. Continuity equation and momentum equation were applied to analyze the debris flow with strong mobility, and the sedimentation and erosion velocity with fine particle fractions were also applied. This study is to analyze the behavior of debris flow at the downstream end for the variation of the amount of sediments can occur in the upstream of the mountain. Analysis of sediment volume concentration at the downstream end of the channel due to the variance of the length of pavement of the granulated soils resulted in the higher the supply flow discharge and the longer the length of pavement, the greater the difference in the level of sediment concentration and the earlier the point of occurrence of the inflection point. The results of this study will provide good information for determining the erosion-sedimentation velocity rate which can detect erosion and sedimentation on steep slopes.