Evaluation of the Effects of the Longitudinal Baffle on Settling Efficiency within Rectangular-shaped Sedimentation Basin

장방형 침전지내 도류벽의 침전효율에 대한 영향 평가

  • 박노석 (한국수자원공사 K-water 연구원) ;
  • 김성수 (한국수자원공사 K-water 연구원) ;
  • 서인석 (한국수자원공사 K-water 연구원) ;
  • 민경은 (한국수자원공사 K-water 연구원)
  • Received : 2009.06.12
  • Accepted : 2009.10.05
  • Published : 2009.10.15

Abstract

In the case that the average velocity within rectangular-shaped sedimentation basin is less than 1.5cm/sec, and Froude number less than $10^{-6}$, it can not be expected that the longitudinal baffle improves the sedimentation efficiency. Also, since relatively lower velocity increases the effect of geostrophic body force, asymmetric flow pattern on a plane occurs within the basin. From the results of CFD (Computational Fluid Dynamics) simulation, in the case that the highest velocity within rectangular-shaped sedimentation basin is over 1.5cm/sec, and Froude number over $10^{-6}$, it can be expected that the longitudinal baffle installed within rectangular-shaped sedimentation basin improves the sedimentation efficiency.

Keywords

References

  1. 김정현, 배철호, 박노석, 문용택, 이선주, 권순범, 안효원 (2005) 정수장 최적화를 위한 성능제한인자 평가에 관한 연구, 상하수도학회지, Vol.19, No.1, pp.78-91
  2. 박세진, 박노석, 임재림, 김선규, 김석구, 문용택, 방기웅 (2006) CFD를 이용한 침전지 구조가 수리거동에 미치는 영향 평가 (Ⅰ) : 도류벽의 영향, 상하수도학회지, Vol. 20, No. 5, pp. 667-676
  3. 환경부 (2004) 상수도시설기준
  4. Chao, J. L and Trussel, R. R. (1980) Hydraulic Design of Flow Distribution Channels, Journal of Environmental Engineering, ASCE, Vol. 106, pp.321-333
  5. Currie, I. G., (1993) Fundamental mechanics of fluids, McGraw-Hill, New York
  6. Matko, T., Fawcett, N., Sharp, A., and Stephenson, T. (1996) Recent Progress in the numerical modelling of wastewater sedimentation tanks, Trans, IChem, 74B, pp.245-257 https://doi.org/10.1205/095758296528590
  7. Vittal, N. and Raghav, M. S. (1997) Design of Single-Chamber Settling Basins, ASCE, Journal of Environmental Engineering, Vol. 123, No. 10, pp.469-471 https://doi.org/10.1061/(ASCE)0733-9372(1997)123:5(469)
  8. Prabhata K. Swamee and Aditya Tyagi (1996) Design of Class-I Sedimention Tanks, ASCE, Journal of Environmental Engineering, Vol. 122, No1, pp.71-73 https://doi.org/10.1061/(ASCE)0733-9372(1996)122:1(71)
  9. Jayanti, S. and Narayanan, S. (2004) Computational Study of Particle-Eddy Interaction in Sedimentation Tanks, ASCE, Journal of Environmental Engineering, Vol. 130, pp.37-49 https://doi.org/10.1061/(ASCE)0733-9372(2004)130:1(37)
  10. Kawamura, S. (1991), Integrated Design of Water Treatment Facilities, John Wiley & Sons, Inc
  11. Stovin V. R. and Saul A. J. (1994) Sedimentation in Storage Tank Structures, Water Science and Technology, Vol. 29, No. 1-2, pp.363-372
  12. Stovin V. R. and Saul A. J. (1996) Efficiency Prediction for Storage Chambers Using Computational Fluid Dynamics, Water Science and Technology, Vol. 33, No. 9, pp. 163-170 https://doi.org/10.1016/0273-1223(96)00383-6
  13. Stovin V. R. and Saul A. J. (1998) A Computational Fluid Dynamics Particle Tracking Approach to Efficiency Prediction,' Water Science and Technology, Vol. 37, No. 1, pp. 285-293 https://doi.org/10.1016/S0273-1223(97)00780-4