• Title/Summary/Keyword: Sediment transport capacity

Search Result 26, Processing Time 0.022 seconds

NUMERICAL MODELING OF NON-CAPACITY MODEL FOR SEDIMENT TRANSPORT BY CENTRAL UPWIND SCHEME

  • S. JELTI;A. CHARHABIL;J. EL GHORDAF
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.1
    • /
    • pp.181-192
    • /
    • 2023
  • This work deals with the numerical modeling of dam-break flow over erodible bed. The mathematical model consists of the shallow water equations, the transport diffusion and the bed morphology change equations. The system is solved by central upwind scheme. The obtained results of the resolution of dam-beak problem is presented in order to show the performance of the numerical scheme. Also a comparison of central upwind and Roe schemes is presented.

Prediction of Reservoir Sedimentation Patterns Using a Two-Dimensional Transport Model (2차원 유사운송모형을 이용한 저수지 퇴적분포유형의 추정)

  • 이봉훈;박창헌;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.1
    • /
    • pp.50-58
    • /
    • 1993
  • The sedimentation patterns at a reservoir, important to the reservoir capacity curve were simulated using a depth averaged, two-dimensional sediment transport model, that is capable of depicting velocity distributions and sediment transportation. The Banweol reservoir, whose stage capacity relationships have been surveyed before and after the construction, was selected and the daily inflow rates and stages were simulated using a reservoir operation model(DI-ROM). The applicability of the transport model was tested from the comparisons of simulated sedimentation patterns to the surveyed results. The simulated inflow rates and water level fluctuations at the reservoir during twenty-one years from 1966 to 1986, showed that water levels exceeding 80 percent of the total capacity occurred for 70 percent of the periods and inflow rates less than 5000rn$^3$/day sustained for 54 percent of the spans. Dorminant flow directions were simulated from two streamflow inlets to the dam site. And simulated sediment concentrations were higher near the inlets and lower at the inside of the reservoir. Sediment was deposited heavily near the inlets, and portions of sediments were distributed along the flow paths within the reservoir. The comparisons between the simulation results and the surveyed depositions were partially matched. However, it was not possible to compare two results at the upper parts of the reservoir where dredging was carried out few times for the purpose of reservoir maintenance. This study demonstrates that sedimentation patterns within the reservoir are closely related to incoming sediment and flow rates, water level fluctuations, and flow circulation within the reservoir.

  • PDF

A simple approach to simulate the size distribution of suspended sediment (부유사 입경분포 모의를 위한 간편법)

  • Kwon, Minhyuck;Byun, Jisun;Son, Minwoo
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.347-357
    • /
    • 2024
  • Numerous prior studies have delineated the size distribution of noncohesive sediment in suspension, focusing on mean size and standard deviation. However, suspensions comprise a heterogeneous mixture of sediment particles of varying sizes. The transport dynamics of suspended sediment in turbulent flow are intimately tied to settling velocities calculated based on size and density. Consequently, understanding the grain size distribution becomes paramount in comprehending sediment transport phenomena for noncohesive sediment. This study aims to introduce a straightforward modeling approach for simulating the grain size distribution of suspended sediment amidst turbulence. Leveraging insights into the contrast between cohesive and noncohesive sediment, we have meticulously revised a stochastic flocculation model originally designed for cohesive sediment to aptly simulate the grain size distribution of noncohesive sediment in suspension. The efficacy of our approach is corroborated through a meticulous comparison between experimental data and the grain size distribution simulated by our newly proposed model. Through numerical simulations, we unveil that the modulation of grain size distribution of suspended sediment is contingent upon the sediment transport capacity of the carrier fluid. Hence, we deduce that our simplified approach to simulating the grain size distribution of suspended sediment, integrated with a sediment transport model, serves as a robust framework for elucidating the pivotal bulk properties of sediment transport.

Evaluating Applicability of Sediment Transport Capacity Equations through Sensitivity Analysis (민감도 분석을 통한 유사이송용량 산정식의 적용성 평가)

  • Her, Younggu;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.79-90
    • /
    • 2015
  • 유사는 오염물질을 저장 또는 운반하는 매개체로 하류 수체의 물리적, 화학적, 생물학적 과정에 큰 영향을 미친다. 따라서 유사 발생 및 운송 양의 추정은 수질개선을 위한 유역관리계획을 수립하는데 중요한 자료가 된다. 이러한 유사량 및 운송과정은 주로 모형에 의해 계산되고 모의되는데, 많은 유사운송모형들이 유사이송용량 (sediment transport capacity)식을 이용하여 유사 발생량, 이송량 및 퇴적량을 산정한다. 유출에 의한 유사이송용량을 산정하기 위한 기존의 식들은 각기 다른 목적과 환경에서 개발되어 보편적으로 적용할 수 있는 식은 전무한 실정이다. 이에 본 연구는 유사이송용량을 계산하기 위해 사용되는 식들의 개발 목적과 환경을 검토하고, 경사, 유량, 유사입경 및 토성에 따른 민감도를 조사하여 각 식의 적용성을 평가하였다. 본 연구에서 적용한 8개의 유사이송용량 산정식은 모두 경사도에 가장 민감하게 변화하는 것으로 나타났다. Abraham과 Yalin식 이외의 산정식을 이용하여 계산된 유사이송용량은 경사도가 0.1 % 보다 작을 때는 0 mg/l, 경사도가 100 % 보다 클 때는 이론최대치인 2,650 mg/l 을 넘는 것으로 나타나, 이들 산정식의 적용 가능한 경사도 범위를 0.1 %-100 %로 추정할 수 있었다. Abrahams식은 유량에, Bagnold식은 유사입경 및 토성에 민감한 것으로 나타났다. Low, Rickenmann, 및 Schoklitsch식은 유량에 민감하게 반응하지 않았고, Low와 Schoklitsch식은 토성에도 민감하지 않은 것으로 나타나, 이들 식의 제한된 적용성을 확인하였다. 한편, Yang식은 계산식에 포함된 로그항으로 인해 그 적용범위가 제한되는 경우가 있었다. Abrahams과 Yalin식을 이용하여 산정된 유사운송용량은 모든 인자들에 민감하게 반응하는 것으로 나타났으며, Yalin과 Low식의 경우, silt와 clay에 적용되었을 때 유량이 클수록 유사운송용량이 다소 작아지는 경향을 보임에 따라, 전체적으로 Abraham식의 적용성이 가장 높은 것으로 평가되었다. 본 연구결과는 향후 모형을 이용한 유사량 모의 시 적용대상 지역의 특성에 가장 적합한 유사운송용량 산정식을 선정하는데 유용한 정보를 제공할 것으로 기대된다.

Characteristics of sediment transportation and sediment budget in Nakdong River under weir operations (보 운영에 따른 낙동강 유사이송특성 및 유사수지 분석)

  • Son, Kwang Ik;Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.9
    • /
    • pp.587-595
    • /
    • 2017
  • Hydraulic characteristics affecting sediment transport capacity due to the weir operations were investigated and developed sediment rating curves for four gaging stations (Nakdong, Gumi, Waegwan, and Jindong) in Nakdong River. Analysis found that the sediment transportaion capability had been decreased and it could be proved from the field measurement records in 2013. Applicabilities of nine sediment transport prediction techniques, which are imbeded in GUIDE program, were examined and adopted for the four gaging stations. Analysis of sediment balance for Nakdong River, including 9 major tributaries, had been carried out with pseudo 2-D numerical model and found that: 1) sedimentation phenomena will be prevailed along the Nakdong River. 2) Engelund-Hansen technique shows the least error in estimation of sediment balance. 3) Engelund-Hansen technique most appropriately describes the sediment characteristics for four gaging stations. 4) Estimated error from the sediment balance for Nakdong River was smaller than the error caused by the estimation of sediment incomming from 9 tributries. Therefore, it is necessary to improve the accuracy of predicting the sediment incomming from the tributaties for better sediment balance analysis.

Sediment Transport Characteristics in a Pressure Pipeline (압력 원형관로내 유사이송특성 연구)

  • Son, Kwang Ik;Kim, Hyun Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.205-209
    • /
    • 2011
  • The low carrying capacity caused by the deposition in a sewer line is one of the main reason of the urban flood. Therefore, an efficient maintenance and management of the storm water drainage system is very important to prevent urban flood. In this research, the sediment transport characteristics through a pressure pipeline were examined with laboratory experiments. Bed-forms in a pipeline, sediment rates, roughness due to sediments were examined. Experimental system consists of flow circulation system with a pump and a sediment feeder at the upstream of the pipeline. Sediments were supplied into a 60 mm-diameter and 8 m-long pipe. Maximum flow rate is $30m^3/hr$, and the sediment feeding rate range is 5 g/s~19 g/s. Governing parameters and estimation equation for sediment transport rate were developed. The mean velocity (U), coefficient of viscosity (${\mu}$), unit width bed load ($q_b$), mean diameter of particle ($d_{50}$), unit weight of sediment in water (${\gamma}^{\prime}_s$) were adopted as the most influencing factors of sediment transport patterns. The prediction equation for sediment transport rate were developed with two dimensionless terms. These two dimensionless terms showed a linear relationship with high correlation coefficient.

Numerical Analysis for Bed Changes due to Sediment Transport Capacity Formulas and Sediment Transport Modes at the Upstream Approached Channel of the Nakdong River Estuary Barrage (낙동강하구둑 상류 접근수로에서의 유사량 공식 및 유사 이송형태에 따른 하상변동 수치모의에 관한 연구)

  • Ji, Un;Yeo, Woon-Kwang;Han, Seung-Won
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.6
    • /
    • pp.543-557
    • /
    • 2010
  • The effects of the selection for sediment transport equations and advection-diffusion equations according to different sediment transport modes on the modeling results of bed changes were analyzed using the CCHE2D and compared with field data in this paper. The most suitable sediment transport equation and sediment transport mode for advection-diffusion equation were suggested for the upstream approached channel of the Nakdong River Estuary Barrage. The bed changes simulated by the Engelund and Hansen formula were very small in the modeling case for the low and high flow discharges compared with the case of the Ackers and White formula. Also, the numerical modeling with the actual hydraulic event in 2002 presents that the bed change result with the bed load transport type for advection-diffusion equation was close to the field measurement more than the suspended load type.

Effect of Transport Capacity Formula on Spatial Distribution of Soil Erosion

  • Nguyen, Van Linh;Yeon, Minho;Cho, Seongkeun;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.150-150
    • /
    • 2021
  • Soil erosion due to climate change is one of the global environmental issues. Especially, Korea is vulnerable to soil erosion as the frequency of extreme rainfall events and rainfall intensity are increasing. Soil erosion causes various problems such as reduced farmlands, deterioration of water quality in rivers, etc. To these severe problems, understanding the process of soil erosion is the first process. Then, it is necessary to quantify and analyze soil ersoion using an erosion model. Soil erosion models are divided into empirical, conceptual, and physics-based models according to the structures and characteristics of models. This study used GSSHA (Gridded Surface Subsurface Hydrologic Analysis), the physics-based erosion model, running on WMS (Watershed Modeling System) to analyze soil erosion vulnerability of the CheonCheon watershed. In addition, we compared the six sediment transport capacity formulas provided in the model and evaluated the equations fir on this study site. Therefore, this result can be as a primary tool for soil conservation management.

  • PDF

Characteristics of Turbulent Flows and Suspended Sediment Transport in Open-channel with Submerged Vegetation (침수식생 개수로에서 난류 및 부유사 이동 특성)

  • Yang, Won-Jun;Jang, Ji-Yeon;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.5
    • /
    • pp.417-427
    • /
    • 2011
  • The open-channel flow with submerged vegetation shows distinct features in two separate regions, namely upper and vegetation layers. In the upper layer, the flow is akin to the open-channel flow, while the flow in the vegetation layer is relatively uniform with suppressed turbulence due to vegetation stems. This paper presents laboratory experiments to investigate the characteristics of turbulent flows and suspended sediment transport in open-channel flows with submerged vegetation. An open-channel facility, 0.5 m wide and 12 m long, was used for laboratory experiments. Various discharges were employed with depth ratios of 2~3, and wooden cylinders were used for vegetation. To make equilibrium suspension, sediment particles of median diameter of 75 ${\mu}M$ were fed until capacity condition. Laser Doppler velocimeter was used to measure instantaneous velocity, and direct sampling with vinyl tube was used to measure the concentration of suspended sediment. Using the sampled data, the mean flow and turbulence structures were provided and characteristics of suspended sediment concentration with Rouse number were presented.

Estimating of Soil Loss from Hillslope Using WEPP Model (WEPP 모형을 이용한 경사지 토양유실량 추정)

  • Son, Jung-Ho;Park, Seung-Woo;Kang, Min-Goo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.45-50
    • /
    • 2001
  • The purpose of this study was to estimate of soil loss form hillslope using WEPP(Water Erosion Prediction Project) model. WEPP model was developed for predicting soil erosion and deposition, fundamentally based on soil erosion prediction technology. The model for predicting sediment yields from single storms was applied to a tested watershed. Surface runoff is calculated by kinematic wave equation and infiltration is based on the Green and Ampt equation. Governing equations for sediment continuity, detachment, deposition, shear stress in rills, and transport capacity are presented. Tested watershed has an area of 0.6ha, where the runoff and sediment data were collected. The relative error between predicted and measured runoff was $-16.6{\sim}2.2%$, peak runoff was $-15.6{\sim}2.2%$ and soil loss was $-23.9{\sim}356.5%$.

  • PDF