• 제목/요약/키워드: Sediment particle size

검색결과 172건 처리시간 0.027초

부유사 및 하상토 입도분포를 고려한 저수지 퇴사의 장기모의 (Long-Term Simulation of Reservoir Sedimentation Considering Particle-Size Distributions of Suspended Sediment and Bed Materials)

  • 김대근;신광균
    • 한국수자원학회논문집
    • /
    • 제46권1호
    • /
    • pp.87-97
    • /
    • 2013
  • 본 연구에서는 HEC-RAS의 하상변동모형을 이용하여 고농도의 유사가 중소규모의 저수지에 유입하여 삼각주를 형성하는 과정을 유사의 입도분포를 고려하여 해석하였으며, 다음과 같은 결론을 얻을 수 있었다. 먼저, 삼각주의 시공간적인 분포와 년간 저수지에 퇴적되는 입도별 퇴사량을 합리적으로 예측할 수 있었다. 또한 저수지의 특정위치에서 특정시기에 어떤 입도의 유사가 주로 퇴적되는지를 합리적으로 예측할 수 있었다. 이러한 유사의 입도분포를 고려한 모의와 분석은 수자원관련 시설물의 계획 및 유지관리에 필요한 유용한 정보를 제공해 줄 수 있을 것으로 판단된다.

현장입도분석기를 이용한 섬진강하구 부유퇴적물의 특성 연구 (In situ Particle Size and Volume Concentration of Suspended Sediment in Seomjin River Estuary, Determined by an Optical Instrument,'LISST-100')

  • 김석윤;이병관
    • 한국수산과학회지
    • /
    • 제37권4호
    • /
    • pp.323-329
    • /
    • 2004
  • In situ particle size and volume concentration of suspended sediment was measured at the mouth of Seomjin River Estuary In February 2001, using an optical instrument, 'LISST-100'. Time variation of in situ particle size and concentration shows: (1) during ebb tide, Seomjin River supplies relatively fine-grained particles with less-fluctuated, compared to during flood tide, and well-behaved concentrations following the tidal cycle; and (2) during flood tide, relatively coarse-grained particles with highly variable in size distribution and concentration flow upstream from Kwangyang Bay. This explains a poor correlation $(r^{2}=0.10)$ between sediment concentration and beam attenuation coefficient during flood and a high degree of correlation $(r^{2}=0.80)$ during ebb tide. Relatively fine grained and well defined, monotonous size distribution may promote the correlation between concentration and beam attenuation coefficient due to optical homogeneity of particles during ebb tide. Abundance of large aggregates with time-varying size and shape distributions may be mainly responsible for variations in optical properties of the sediment during flood tide, and thus may confound the relationship between the two variables. The difference in particle sizes and shapes between flood and ebb tides can also be observed on SEM images.

오염저감 기법개발을 위한 유출수내 고형물질 특성 규명 (Analysis of Solids in Runoff to Prevent Solids Pollution)

  • 이영수
    • 상하수도학회지
    • /
    • 제18권1호
    • /
    • pp.22-28
    • /
    • 2004
  • The fate and transport mechanism of pollutants which have affinities to particles, such as trace metals and some petroleum product based compounds, can be effectively explained by the movement of sediment. The sediment release from lands to adjacent water bodies due to rainfall events was investigated in an effort to predict the total suspended solids (TSS) concentrations in runoff. The contribution of sediment from land origin to the river TSS can be better understood by the relationship between TSS concentration and particle size in runoff. The sieve analysis was used to determine the particle size distribution and these results were incorporated into statistical models. The critical size of particles was set to $74{\mu}m$ which contributes to the river TSS concentration since fine particles (wash load) of the sediment in the runoff play the key role in constituting TSS in a water column of the river. Empirical relationships were developed to predict TSS in runoff from the percentage of the critical particle size and were proven statistically to be valid.

심해저 자원 개발과정에서 재부유 퇴적물 입자의 동태 예측에 관한 연구 (Prediction of Fate of Resuspended Sediment in the Development of Deep-sea Mineral Resources)

  • 이두곤
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.45-50
    • /
    • 2002
  • This study presents a modeling method to predict fate of resuspended sediment in the development of deep-sea mineral resources. Resuspended deep-sea sediment during the development is considered a major environmental problem. In order to quantitatively analyze the resuspended sediment in the water column, particle size distribution (PSD) is considered an important factor. The model developed here includes PSD and coagulation process, as well as sedimentation process. Using the model, basic simulation was performed under representative environmental setting. The simulation showed the dynamics of change of particle size distribution for 50 m depth of water column up to 10 days of simulation time. Coagulation seemed an important factor in the fate of resuspended deep-sea sediment.

  • PDF

현장실험을 통한 침사구의 효과 분석 (Field Experimental Analysis of Effects of Sediment Traps)

  • 최경숙;장정렬
    • 한국관개배수논문집
    • /
    • 제21권1호
    • /
    • pp.99-108
    • /
    • 2014
  • This study investigated the effects of NPS(non point source) pollution reduction of sediment traps through field experiments. Various sizes of 4 sediment traps were applied in a upland field located in Gunwi and assessed the infiltration and storage effects as well as NPS pollution reduction effects of this technique. The characteristics of deposited soil in the sediment traps were also analyzed including distribution of particle size, soil texture, and chemical properties. The results showed that slightly different composition of soil particle size from each sediment trap with high proportion of 0.15mm and 0.25mm ranges of soil particle diameters, while the loamy sand is the main types of deposited soils in the sediment traps. Decreased NPS pollution were observed from the water quality analysis of the samples taken from the sediment traps. Further research need to be proceeded continuously to improve this technique in order to utilize on upland fields for management of agricultural NPS pollutions.

  • PDF

영산강 부유하중의 시계열적 입도 특성 변화: 승촌보, 죽산보를 중심으로 (Time-series Changes in Particle Size Characteristics of Suspended Sediment at the Seungchon and the Juksan Weir in the Yeongsan River)

  • 임영신;김진관
    • 한국지형학회지
    • /
    • 제26권4호
    • /
    • pp.1-20
    • /
    • 2019
  • In order to establish appropriate policy to control sediment-associated problems, it is necessary to identify the physical characteristics of the reservoir sediments in particulate form in the Yeongsan River. Two time-integrated suspended sediment samplers were installed at Seungchon and Juksan weir on the upper and middle Yeongsan River in July 2012. Reservoir sediment samples were obtained at monthly intervals until October 2014. During the monitoring period, a total of 38 sediment samples were obtained and analyzed. Seasonal trends of suspended sedimentation rates and grain size distributions were examined based on variations in precipitation and discharge fluctuations. Moreover, stream flow characteristics, which has a great influence on the physical characteristics of the river sediment, was analyzed using flow duration curve for the period 2003-2019 at Naju gauging station. Sedimentation rates during summer, when heavy rainfall was concentrated due to the monsoonal front and typhoon, were very high, indicating the positive relationship between sediment concentration and discharge. Particle size analysis of the collected sediment showed that coarse silt and very fine sand-sized sediment dominated most of the Seungchon weir sediment. On the other hand, medium silt-sized sediment dominated the downstream Juksan weir except for a few summer samples. These results implied that the physical characteristics of the suspended sediment are determined not only due to flow fluctuations, but also with regard to the antecedent rainfall conditions, hillslope-channel connectivity, and the supply of materials from various contributing regions. This information about flow characteristics and temporal variations in reservoir sediment can be used for safe management of the weir and discussing the issues on the dismantling of the weirs.

하천 퇴적물의 입자크기에 따른 불소의 흡착 특성 (Effect of Particle Size of Sediment on Adsorption of Fluoride)

  • 김채림;오종민
    • 생태와환경
    • /
    • 제49권4호
    • /
    • pp.289-295
    • /
    • 2016
  • The purpose of this study is to find out the effect of particle size of sediment on adsorption of fluoride. Particle size is classified as sand, silt and clay. Adsorption equilibrium time, adsorption isotherms and the effect of pH were investigated through batch tests. The $pH_{pzc}$ of sand, silt, clay was respectively 6, 8, 4.5 and AEC (anion exchange capacity) was highest in silt, respectively 0.0095, 0.0224, $0.014meq\;g^{-1}$. Adsorption of fluoride on the sediment was in equilibrium within 300 minutes from all particle size. The experimental data of isotherms at various pH were well explained by Freundlich equation. As the experimental results of the effect of pH, the adsorption efficiency of sand and silt were reduced after the $pH_{pzc}$. However, the adsorption efficiency of clay was maintained after the $pH_{pzc}$, and decreased rapidly higher than pH 12.

동강의 하천 퇴적물의 입자 특성 및 암석의 반발 강도 특성에 대한 연구 (A Study on the Characteristics of River Sediments and the Rebound Strength of Rock and Sediment in Dong River)

  • 신원정;김종연
    • 한국지형학회지
    • /
    • 제26권1호
    • /
    • pp.41-57
    • /
    • 2019
  • The grain size characteristics of river sediments and the characteristics of bedrock were investigated for the 24km section of the Dong River upstream of the Han River. The bedrock of the study area is various limestone belonging to the Paleozoic Choseon limestone group, and Mesozoic sandstone and conglomerate occur in some areas. Most of the river channel is made of limestone, and most of the river bottom is covered with fluvial sediments. More than 70% of these sediments are sandstone and conglomerate, rather than limestone which forms the basis of the valley. Sediment particles seem to have been supplied upstream of the study area rather supplied from the slope near of the channel. It is difficult to find the statistically significant difference in the shape of the sediment particles of limestones and non-limestones. However, limestones has platy forms rather than block forms, it can be assumed that the limestone was supplied from the surrounding valley wall and transported over a short distance. The particle sizes of DG1~DG2(the upstream section) are decreasing in the downstream direction. However, at DG3, which is a tributary, Jijangcheon, confluence particle size increases and at DG4 particle size increases more. In the case of DG4, it may be influenced by the influx of tributaries, but it also can be supposed as the impact of the large flood in 2002. In the downstream parts(DG5~DG7), the particle size decreases exponentially with distance. The rebound strength of stream sediments and bedrock was measured by using Schmidt hammer. Limestone showed lower rebound strength than non-limestone. According to the results of the sediment and bedrock, it can be seen that the sandstone and conglomerate with high rebound values pass through valley with the relatively low strength limestone. The sediments of limestone were decreased in grain size more rapidly than those of limestone sediments.

Sediment Erosion and Transport Experiments in Laboratory using Artificial Rainfall Simulator

  • Regmi, Ram Krishna;Jung, Kwansue;Nakagawa, Hajime;Kang, Jaewon;Lee, Giha
    • 한국지반환경공학회 논문집
    • /
    • 제15권4호
    • /
    • pp.13-27
    • /
    • 2014
  • Catchments soil erosion, one of the most serious problems in the mountainous environment of the world, consists of a complex phenomenon involving the detachment of individual soil particles from the soil mass and their transport, storage and overland flow of rainfall, and infiltration. Sediment size distribution during erosion processes appear to depend on many factors such as rainfall characteristics, vegetation cover, hydraulic flow, soil properties and slope. This study involved laboratory flume experiments carried out under simulated rainfall in a 3.0 m long ${\times}$ 0.8 m wide ${\times}$ 0.7 m deep flume, set at $17^{\circ}$ slope. Five experimental cases, consisting of twelve experiments using three different sediments with two different rainfall conditions, are reported. The experiments consisted of detailed observations of particle size distribution of the out-flow sediment. Sediment water mixture out-flow hydrograph and sediment mass out-flow rate over time, moisture profiles at different points within the soil domain, and seepage outflow were also reported. Moisture profiles, seepage outflow, and movement of overland flow were clearly found to be controlled by water retention function and hydraulic function of the soil. The difference of grain size distribution of original soil bed and the out-flow sediment was found to be insignificant in the cases of uniform sediment used experiments. However, in the cases of non-uniform sediment used experiments the outflow sediment was found to be coarser than the original soil domain. The results indicated that the sediment transport mechanism is the combination of particle segregation, suspension/saltation and rolling along the travel distance.

가는 모래의 부유 모의시 차폐효과 고려의 영향 (Applicability of hiding-exposure effect to suspension simulation of fine sand bed)

  • 변지선;손민우
    • 한국수자원학회논문집
    • /
    • 제54권8호
    • /
    • pp.607-616
    • /
    • 2021
  • 본 연구는 가는 모래로 이루어진 하상으로부터 침식된 부유사의 농도분포 계산결과에 차폐효과가 미치는 영향을 살펴보는 것을 목적으로 수행되었다. 하상재료의 입도분포를 고려하여 침식율을 산정할 수 있는 유사이동 모형을 개발하였으며, 측정자료와의 비교를 통해 수치모형의 적용가능성을 검토하였다. 수치모의결과로부터 하상재료 입도분포의 기하표준편차가 1.5보다 작은 경우 차폐효과가 부유사 농도의 연직방향 분포 계산결과에 미치는 영향은 매우 작은 것으로 나타났다. 또한 기하표준편차가 1.5이하인 가는 모래로 이루어진 하상으로부터 침식된 유사 농도를 계산하는 경우, 균일사로 가정 후 대표입경을 바탕으로 농도를 산정하여도 합리적인 결과가 얻어지는 것으로 확인되었다.