DOI QR코드

DOI QR Code

Applicability of hiding-exposure effect to suspension simulation of fine sand bed

가는 모래의 부유 모의시 차폐효과 고려의 영향

  • Byun, Jisun (Research Center for Smart Infra Construction, Chungnam National University) ;
  • Son, Minwoo (Department of Civil Engineering, Chungnam National University)
  • 변지선 (충남대학교 스마트인프라건설연구소) ;
  • 손민우 (충남대학교 공과대학 토목공학과)
  • Received : 2021.04.21
  • Accepted : 2021.06.16
  • Published : 2021.08.31

Abstract

The purpose of this study is to simulate the transport of nonuniform sediment considering the hiding-exposure effect numerically. In order to calculate the transport of multi-disperse suspended sediment mixtures, the set of advection-diffusion equations for each particle class is solved. The applicability of the numerical model is examined by comparing the simulation results with experimental data. In this study, we calculate the vertical distribution of total concentration of sediment particles using two approaches: (1) by considering the mixture as represented by a single size; and (2) by combining the concentration of the sediment corresponding to several particle size classes; From the simulation results, it is shown that both approaches calculate reasonable results due to the narrow range of size distribution. Under the condition of nonuniform sediment, the critical shear stress of the sediment particle is influenced by the size-selective entrainment, i.e., hiding-exposure effect. It is shown in this study that the effect of hiding-exposure effect on the erosion rates of fine sand is negligibly small.

본 연구는 가는 모래로 이루어진 하상으로부터 침식된 부유사의 농도분포 계산결과에 차폐효과가 미치는 영향을 살펴보는 것을 목적으로 수행되었다. 하상재료의 입도분포를 고려하여 침식율을 산정할 수 있는 유사이동 모형을 개발하였으며, 측정자료와의 비교를 통해 수치모형의 적용가능성을 검토하였다. 수치모의결과로부터 하상재료 입도분포의 기하표준편차가 1.5보다 작은 경우 차폐효과가 부유사 농도의 연직방향 분포 계산결과에 미치는 영향은 매우 작은 것으로 나타났다. 또한 기하표준편차가 1.5이하인 가는 모래로 이루어진 하상으로부터 침식된 유사 농도를 계산하는 경우, 균일사로 가정 후 대표입경을 바탕으로 농도를 산정하여도 합리적인 결과가 얻어지는 것으로 확인되었다.

Keywords

Acknowledgement

본 연구는 2021년도 한국연구재단 창의도전(No. NRF-2020R1I1A1A01055310)의 지원을 받아 수행되었습니다.

References

  1. Bathurst, J.C. (2013). "Critical conditions for particle motion in coarse bed materials of nonuniform size distribution." Geomorphology, Vol. 197, pp. 170-184. https://doi.org/10.1016/j.geomorph.2013.05.008
  2. Cellino, M., and Graf, W.H. (1999). "Sediment-laden flow in open-channels under noncapacity and capacity conditions." Journal f Hydraulic Engineering, Vol. 125, No. 5, pp. 455-462. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:5(455)
  3. Chen, X., Zhang, M., and Yu, G. (2020). "Depth-averaged von Karman coefficient in sediment-laden flows using a turbulent kinetic energy balance." Journal of Hydraulic Engineering, Vol. 146, No. 4, 06020003. https://doi.org/10.1061/(asce)hy.1943-7900.0001713
  4. Coleman, N.L. (1986). "Effects of suspended sediment on the openchannel velocity distribution." Water Resources Research, Vol. 22, No. 10, pp. 1377-1384. https://doi.org/10.1029/WR022i010p01377
  5. Egiazaroff, I.V. (1965). "Calculation of nonuniform sediment concentrations." Journal of the Hydraulics Division, Vol. 91, No. 4, pp. 225-247. https://doi.org/10.1061/JYCEAJ.0001277
  6. Einstein, H.A. (1950). The bed-load function for sediment transportation in open channel flows. Technical Bulletin No. 1026, United States Department of Agriculture Soil Conservation Service, Wasington, D.C., U.S.
  7. Graf, W.H. (1984). Hydraulics of sediment transport. Water Resources Publications, LCC, CO, U.S., pp. 94-98.
  8. Huai, X., Yang, L., and Guo, Y. (2020). "Analytic solution of suspended sediment concentration profile: Relevance of dispersive flow term in vegetated channels." Water Resources Research, Vol. 56, No. 7, e2019WR027012.
  9. Jang, C.-L. (2016). "Experimental study on the sediment sorting processes of the bed surface by geomorphic changes in the vegetated channels." Journal of Korea Water Resources Association, Vol. 49, No. 1, pp. 73-81. https://doi.org/10.3741/JKWRA.2016.49.1.73
  10. Jha, S.K., and Bombardelli, F.A. (2011). "Theoretical/numerical model for the transport of non-uniform suspended sediment in open channels." Advances in Water Resources, Vol. 34, No. 5, pp. 577-591. https://doi.org/10.1016/j.advwatres.2011.02.001
  11. Julien, P.Y. (2010). Erosion and Sedimentation, Cambridge University Press, Cambridge, p. 96.
  12. Kundu, S. (2016). "Effect of lateral bed roughness variation on particle suspension in open channels." Environmental Earth Sciences, Vol. 75, No. 8, pp. 1-18. https://doi.org/10.1007/s12665-015-4873-x
  13. Lee, B.J., Toorman, E., and Fettweis, M. (2014). "Multimodal particle size distributions of fine-grained sediments: Mathematical modeling and field investigation." Ocean Dynamics, Vol. 64, No. 3, pp. 429-441. https://doi.org/10.1007/s10236-014-0692-y
  14. Lyn, D.A. (1986). Turbulence and turbulent transport in sediment-laden open-channel flows. Ph.D. dissertation, California Institute of Technology, Pasadena, CA, U.S.
  15. McCarron, C., van Landeghem, K.J.J., Bass, J.H., Amoudry, L.O., and Malarkey, J. (2019). "The hiding-exposure effect revisited: A method to calculate the mobility of bimodal sediment mixtures." Marine Geology, Vol. 410, pp. 22-31. https://doi.org/10.1016/j.margeo.2018.12.001
  16. Misri, R.L., Garde, R.J., and Ranga Raju, K.G. (1984). "Bed load transport of coarse nonuniform sediment." Journal of Hydraulic Engineering, Vol. 110, No. 3, pp. 312-328. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:3(312)
  17. Nino, Y., and Garcia, M. (1998). "Engelund's analysis of turbulent energy and suspended load." Journal of Engineering Mechanics, Vol. 124, No. 4, pp. 480-483. https://doi.org/10.1061/(asce)0733-9399(1998)124:4(480)
  18. Parker, G., Klingeman, P.C., and McLean, D.G. (1982). "Bedload and size distribution in paved gravel-bed streams." Journal of the Hydraulics Division, Vol. 108, No. 4, pp. 544-571. https://doi.org/10.1061/JYCEAJ.0005854
  19. Rubin, H., and Atkinson, J. (2001). Environmental fluid mechanics. Marcel Dekker, New York, NY, U.S. p. 653.
  20. Shields, I.A. (1936). Application of similarity principles and turbulence research to bed-load movement. California Institute of Technology, Pasadena, CA, U.S.
  21. Shvidchenko, A.B., Pender, G., and Hoey, T.B. (2001). "Critical shear stress for incipient motion of sand/gravel streambeds." Water Resources Research, Vol. 37, No. 8, pp. 2273-2283. https://doi.org/10.1029/2000WR000036
  22. Smaoui, H., Boughanim, F., and Chapalain, G. (2007). "1D vertical model for suspended sediment transport in turbulent tidal flow: Application to the English Channel." Computers & Geoscience, Vol. 33, No. 9, pp. 1111-1129. https://doi.org/10.1016/j.cageo.2006.11.016
  23. Son, M., Byun. J., Kim, S.U., and Chung, E.S. (2016). "Effect of particle size on calibration of Schmidt number." Journal of Coastal Research, Vol. 75, No. SI, pp. 148-152. https://doi.org/10.2112/SI75-30.1
  24. Taggart, W.C., Termoli, C.A., Montes, S., and Ippen, A. (1972). Effects of sediment size and gradation on concentration profiles in turbulent flow. No. 152, MIT Press, MA, U.S. pp. 1-154.
  25. van Ingen, C. (1981). Observations in a sediment-laden flow by use of Laser-Doppler Velocimetry. Ph.D. dissertation, California Institute of Technology, Pasadena, CA, U.S.
  26. van Rijn, L.C. (1984). "Sediment transport, part II: Suspended load transport." Journal of Hydraulic Engineering, Vol. 110, No. 11, pp. 1613-1641. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613)
  27. van Rijn, L.C. (2007). "Unified view of sediment transport by currents and waves. III: Graded bed." Journal of Hydraulic Engineering, Vol. 133, No. 7, pp. 761-775. https://doi.org/10.1061/(asce)0733-9429(2007)133:7(761)
  28. Ward, B.D. (1969). "Relative density effects on incipient bed movement." Water Resources Research, Vol. 5, No. 5, pp. 1090-1096. https://doi.org/10.1029/WR005i005p01090
  29. Wathen, S.J., Ferguson, R.I., Hoey, T.B., and Werritty, A. (1995). "Unequal mobility of gravel and sand in weakly bimodal river sediments." Water Resources Research, Vol. 31, No. 8, pp. 2087-2096. https://doi.org/10.1029/95WR01229
  30. Wilcock, P.R. (1993). "Critical shear stress of natural sediments." Journal of Hydrulic Engineering, Vol. 119, No. 4, pp. 491-505. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:4(491)
  31. Wilcock, P.R., and Crowe, J.C. (2003). "Surface-based transport model for mixed-size sediment." Journal of Hydraulic Engineering, Vol. 129, No. 2, pp. 120-128. https://doi.org/10.1061/(asce)0733-9429(2003)129:2(120)
  32. Wilcock, P.R., and Southard, J.B. (1988). "Experimental study of incipient motion in mixed-size sediment." Water Resources Research, Vol. 24, No. 7, pp. 1137-1151. https://doi.org/10.1029/WR024i007p01137
  33. Wu, B., Molinas, A., and Julien, P.Y. (2004). "Bed-material load computations for nonuniform sediment." Journal of Hydraulic Engineering, Vol. 130, No. 10, pp. 1002-1012. https://doi.org/10.1061/(asce)0733-9429(2004)130:10(1002)
  34. Wu, F.C., and Yang, K.H. (2004). "A stochastic partial transport model for mixed-size sediment: Application to assessment of fractional mobility." Water Resources Research, Vol. 40, No. 4, W044501.
  35. Wu, W., Wang, S.S.Y., and Jia, F. (2000). "Nonuniform sediment transport in alluvial rivers." Journal of Hydraulic Research, Vol. 38, No. 6, pp. 427-434. https://doi.org/10.1080/00221680009498296
  36. Yang, C.T. (2003). Sediment transport: Theory and practice. Krieger Publishing Company, FL, U.S., pp. 1-396.
  37. Yeh, T.-H., and Parker, G. (2013). "Software for evaluating sedimentinduced stratification in open-channel flows." Computers & Geosciences, Vol. 53, pp. 94-104. https://doi.org/10.1016/j.cageo.2011.12.004
  38. Zeller, J. (1963). "Einfuhrung in den Sedimenttransport offener Gerinne." Schweizerische Bauzeitung, Vol. 81, pp. 597-602.