• Title/Summary/Keyword: Security Techniques

Search Result 1,571, Processing Time 0.022 seconds

Detecting Android Malware Based on Analyzing Abnormal Behaviors of APK File

  • Xuan, Cho Do
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.17-22
    • /
    • 2021
  • The attack trend on end-users via mobile devices is increasing in both the danger level and the number of attacks. Especially, mobile devices using the Android operating system are being recognized as increasingly being exploited and attacked strongly. In addition, one of the recent attack methods on the Android operating system is to take advantage of Android Package Kit (APK) files. Therefore, the problem of early detecting and warning attacks on mobile devices using the Android operating system through the APK file is very necessary today. This paper proposes to use the method of analyzing abnormal behavior of APK files and use it as a basis to conclude about signs of malware attacking the Android operating system. In order to achieve this purpose, we propose 2 main tasks: i) analyzing and extracting abnormal behavior of APK files; ii) detecting malware in APK files based on behavior analysis techniques using machine learning or deep learning algorithms. The difference between our research and other related studies is that instead of focusing on analyzing and extracting typical features of APK files, we will try to analyze and enumerate all the features of the APK file as the basis for classifying malicious APK files and clean APK files.

Developing a Quality Prediction Model for Wireless Video Streaming Using Machine Learning Techniques

  • Alkhowaiter, Emtnan;Alsukayti, Ibrahim;Alreshoodi, Mohammed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.229-234
    • /
    • 2021
  • The explosive growth of video-based services is considered as the dominant contributor to Internet traffic. Hence it is very important for video service providers to meet the quality expectations of end-users. In the past, the Quality of Service (QoS) was the key performance of networks but it considers only the network performances (e.g., bandwidth, delay, packet loss rate) which fail to give an indication of the satisfaction of users. Therefore, Quality of Experience (QoE) may allow content servers to be smarter and more efficient. This work is motivated by the inherent relationship between the QoE and the QoS. We present a no-reference (NR) prediction model based on Deep Neural Network (DNN) to predict video QoE. The DNN-based model shows a high correlation between the objective QoE measurement and QoE prediction. The performance of the proposed model was also evaluated and compared with other types of neural network architectures, and three known machine learning methodologies, the performance comparison shows that the proposed model appears as a promising way to solve the problems.

Intelligent Android Malware Detection Using Radial Basis Function Networks and Permission Features

  • Abdulrahman, Ammar;Hashem, Khalid;Adnan, Gaze;Ali, Waleed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.286-293
    • /
    • 2021
  • Recently, the quick development rate of apps in the Android platform has led to an accelerated increment in creating malware applications by cyber attackers. Numerous Android malware detection tools have utilized conventional signature-based approaches to detect malware apps. However, these conventional strategies can't identify the latest apps on whether applications are malware or not. Many new malware apps are periodically discovered but not all malware Apps can be accurately detected. Hence, there is a need to propose intelligent approaches that are able to detect the newly developed Android malware applications. In this study, Radial Basis Function (RBF) networks are trained using known Android applications and then used to detect the latest and new Android malware applications. Initially, the optimal permission features of Android apps are selected using Information Gain Ratio (IGR). Appropriately, the features selected by IGR are utilized to train the RBF networks in order to detect effectively the new Android malware apps. The empirical results showed that RBF achieved the best detection accuracy (97.20%) among other common machine learning techniques. Furthermore, RBF accomplished the best detection results in most of the other measures.

Privacy-Preserving in the Context of Data Mining and Deep Learning

  • Altalhi, Amjaad;AL-Saedi, Maram;Alsuwat, Hatim;Alsuwat, Emad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.137-142
    • /
    • 2021
  • Machine-learning systems have proven their worth in various industries, including healthcare and banking, by assisting in the extraction of valuable inferences. Information in these crucial sectors is traditionally stored in databases distributed across multiple environments, making accessing and extracting data from them a tough job. To this issue, we must add that these data sources contain sensitive information, implying that the data cannot be shared outside of the head. Using cryptographic techniques, Privacy-Preserving Machine Learning (PPML) helps solve this challenge, enabling information discovery while maintaining data privacy. In this paper, we talk about how to keep your data mining private. Because Data mining has a wide variety of uses, including business intelligence, medical diagnostic systems, image processing, web search, and scientific discoveries, and we discuss privacy-preserving in deep learning because deep learning (DL) exhibits exceptional exactitude in picture detection, Speech recognition, and natural language processing recognition as when compared to other fields of machine learning so that it detects the existence of any error that may occur to the data or access to systems and add data by unauthorized persons.

Prediction of Protein-Protein Interactions from Sequences using a Correlation Matrix of the Physicochemical Properties of Amino Acids

  • Kopoin, Charlemagne N'Diffon;Atiampo, Armand Kodjo;N'Guessan, Behou Gerard;Babri, Michel
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.41-47
    • /
    • 2021
  • Detection of protein-protein interactions (PPIs) remains essential for the development of therapies against diseases. Experimental studies to detect PPI are longer and more expensive. Today, with the availability of PPI data, several computer models for predicting PPIs have been proposed. One of the big challenges in this task is feature extraction. The relevance of the information extracted by some extraction techniques remains limited. In this work, we first propose an extraction method based on correlation relationships between the physicochemical properties of amino acids. The proposed method uses a correlation matrix obtained from the hydrophobicity and hydrophilicity properties that it then integrates in the calculation of the bigram. Then, we use the SVM algorithm to detect the presence of an interaction between 2 given proteins. Experimental results show that the proposed method obtains better performances compared to the approaches in the literature. It obtains performances of 94.75% in accuracy, 95.12% in precision and 96% in sensitivity on human HPRD protein data.

Care Cost Prediction Model for Orphanage Organizations in Saudi Arabia

  • Alhazmi, Huda N;Alghamdi, Alshymaa;Alajlani, Fatimah;Abuayied, Samah;Aldosari, Fahd M
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.84-92
    • /
    • 2021
  • Care services are a significant asset in human life. Care in its overall nature focuses on human needs and covers several aspects such as health care, homes, personal care, and education. In fact, care deals with many dimensions: physical, psychological, and social interconnections. Very little information is available on estimating the cost of care services that provided to orphans and abandoned children. Prediction of the cost of the care system delivered by governmental or non-governmental organizations to support orphans and abandoned children is increasingly needed. The purpose of this study is to analyze the care cost for orphanage organizations in Saudi Arabia to forecast the cost as well as explore the most influence factor on the cost. By using business analytic process that applied statistical and machine learning techniques, we proposed a model includes simple linear regression, Naive Bayes classifier, and Random Forest algorithms. The finding of our predictive model shows that Naive Bayes has addressed the highest accuracy equals to 87% in predicting the total care cost. Our model offers predictive approach in the perspective of business analytics.

Load Balancing Approach to Enhance the Performance in Cloud Computing

  • Rassan, Iehab AL;Alarif, Noof
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.158-170
    • /
    • 2021
  • Virtualization technologies are being adopted and broadly utilized in many fields and at different levels. In cloud computing, achieving load balancing across large distributed virtual machines is considered a complex optimization problem with an essential importance in cloud computing systems and data centers as the overloading or underloading of tasks on VMs may cause multiple issues in the cloud system like longer execution time, machine failure, high power consumption, etc. Therefore, load balancing mechanism is an important aspect in cloud computing that assist in overcoming different performance issues. In this research, we propose a new approach that combines the advantages of different task allocation algorithms like Round robin algorithm, and Random allocation with different threshold techniques like the VM utilization and the number of allocation counts using least connection mechanism. We performed extensive simulations and experiments that augment different scheduling policies to overcome the resource utilization problem without compromising other performance measures like makespan and execution time of the tasks. The proposed system provided better results compared to the original round robin as it takes into consideration the dynamic state of the system.

IT - Education In The Context Of Educational Activities

  • Marchenko, Olga;Noskova, Margaryta;Fedorenko, Igor;Semenog, Olena;Vovk, Myroslava;Romanyshyn, Ruslana
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.151-155
    • /
    • 2021
  • The article is based on a model, in the context of which there are two fundamental building blocks of basic library skills and skills in the use of information technology. The former are formed within the framework of educational programs for users of academic libraries, the latter are formed within the framework of initiatives such as the European Computer Driving License. Between the basic and the highest levels of the concept of "information literacy" there are seven heading skills and attributes, the repeated practice of which leads from the position of a competent user to an expert level of reflection and critical awareness of information as an intellectual resource. Freshmen will likely be at the beginning of the arrow, probably practicing only the first four skills, while graduate students and young scientists will be closer to the end and will use seven skills.

Reliability-based Message Transmission System in Healthcare Devices (헬스케어 디바이스에서의 신뢰성 기반 메시지 전달 시스템)

  • Lee, Young-Dong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.3
    • /
    • pp.142-147
    • /
    • 2020
  • The Internet of Things is valuable as a means of solving social problems such as personal, public, and industrial. Recently, the application of IoT technology to the healthcare industry is increasing. It is important to ensure reliability and security in IoT-based healthcare services. Communication protocols, wireless transmit/receive techniques, and reliability-based message delivery are essential elements in IoT healthcare devices. The system was designed and implemented to measure body temperature and activity through body temperature and acceleration sensors and deliver them to the oneM2M-based Mobius platform.

Text Mining in Online Social Networks: A Systematic Review

  • Alhazmi, Huda N
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.396-404
    • /
    • 2022
  • Online social networks contain a large amount of data that can be converted into valuable and insightful information. Text mining approaches allow exploring large-scale data efficiently. Therefore, this study reviews the recent literature on text mining in online social networks in a way that produces valid and valuable knowledge for further research. The review identifies text mining techniques used in social networking, the data used, tools, and the challenges. Research questions were formulated, then search strategy and selection criteria were defined, followed by the analysis of each paper to extract the data relevant to the research questions. The result shows that the most social media platforms used as a source of the data are Twitter and Facebook. The most common text mining technique were sentiment analysis and topic modeling. Classification and clustering were the most common approaches applied by the studies. The challenges include the need for processing with huge volumes of data, the noise, and the dynamic of the data. The study explores the recent development in text mining approaches in social networking by providing state and general view of work done in this research area.