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Summary 
Detection of protein-protein interactions (PPIs) remains essential 
for the development of therapies against diseases. Experimental 
studies to detect PPI are longer and more expensive. Today, with 
the availability of PPI data, several computer models for 
predicting PPIs have been proposed. One of the big challenges in 
this task is feature extraction. The relevance of the information 
extracted by some extraction techniques remains limited. In this 
work, we first propose an extraction method based on correlation 
relationships between the physicochemical properties of amino 
acids. The proposed method uses a correlation matrix obtained 
from the hydrophobicity and hydrophilicity properties that it then 
integrates in the calculation of the bigram. Then, we use the 
SVM algorithm to detect the presence of an interaction between 
2 given proteins. Experimental results show that the proposed 
method obtains better performances compared to the approaches 
in the literature. It obtains performances of 94.75% in accuracy, 
95.12% in precision and 96% in sensitivity on human HPRD 
protein data. 
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1. Introduction 

Protein is the essential building block of the living 
organism and is involved in various processes of life 
activities such as metabolism, signal transduction, 
hormonal regulation, transcription, and DNA replication. 
In general, proteins perform their complex functions by 
interacting with other proteins. The study of protein-
protein interactions (PPIs) not only helps to understand the 
process of life, but also to explore the parthenogenesis of 
diseases and helps target drugs for new diseases such as 
covid-19. Certain high-throughput proteomic techniques 
such as proteomic chips [1], immunoprecipitation, the two 
yeasts hybrid technique [2] were invented to detect PPIs. 
All these limitations are at the root of the motivation for 
developing computer models to predict PPIs on a large 
scale and efficiently.  
To date, many computational approaches have been 
proposed to predict PPIs from different types of data, 
including genetic ontology and gene annotation [3], 3D 
structural information, and so on. However, these 
approaches are not universal, and their accuracy and 

reliability depend heavily on prior information collected 
on proteins.  In practice, the 3D structure of many proteins 
is unknown, the ontology and annotation of genes are 
incomplete, and PPIs for many species are rarely available.  
With the rapid development of sequencing techniques, 
protein sequence information is collected and stored in 
large quantities in databases such as the Human Protein 
Reference Database (HPRD) [4], the Protein Interaction 
Database (PID) [5], the Molecular Interaction Database 
(IntAct) [6] and the Biomolecular Interaction Network 
Database (BIND) [7]. However, one of the major 
difficulties in setting up a computer model for PPI 
prediction that uses protein sequence information is feature 
extraction. This essential step consists in transforming the 
information of the protein sequence generally coded with 
letters of the alphabet into useful numerical data. Chou [8] 
proposed the pseudo amino acid composition method 
(PAAC) to improve the quality of prediction of subcellular 
localization of proteins and membrane protein types. Its 
goal is to continue to use a discrete model to represent a 
protein without losing completely information about its 
sequence order. The PAAC method generates 20 + m 
components, of which the first 20 are the 20 components 
of the amino acid composition and the last m components 
are the sequential order components. Guo et al. [9]  
applied the autocovariance (AC) method to discover 
information in discontinuous amino acid sequence 
segments. As a result of classification, they obtained 86.55% 
in accuracy on the PPIs of the S. Cerevisiae dataset. You et 
al. [10] used an amino acid substitution matrix to extract 
characteristics and then applied rotation forest set 
classifiers [11] to predict PPIs. This method achieved an 
accuracy of 90.06%, sensitivity of 85.74% and specificity 
of 94.37% in the yeast protein dataset. Pan et al. [12] 
proposed a new hierarchical model (LDA-RF) to directly 
predict protein-protein interactions in primary protein 
sequences. Their approach allows the extraction of internal 
structures hidden in amino acid sequences. Experimental 
results show that this model can efficiently predict 
potential protein interactions.  

The Bigram method is a simple NLP (Natural 
Language Processing) [13] method used in the extraction 
of features from sequences. It allows to have two-by-two 
combinations of amino acid residues along a sequence. For 
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example, the bigram of amino acid i and amino acid j will 
be represented by the frequency of occurrence of the 
transition from the i-th amino acid to the j-th amino acid. 
However, when applied directly to the primary sequence 
of the protein, it can produce a characteristic vector with 
many zeros, which can cause numerical instability during 
the training phase of machine learning algorithms. To deal 
with it, some authors [14]–[16] use PSSM values to 
replace residues. PSSM is a method that was first 
introduced by Gribskov et al. in 1987 [17]. Its particularity 
is that it provides information on the probability of 
substitution of a given amino acid according to its specific 
position along the sequence with the 20 amino acids of the 
genetic code. PSSM values can be obtained from the 
online PSI-BLAST tool. Göktepe and Kodaz [14] used the 
triad and bigram methods combined with PSSM values  to 
extract the features and used an SVM to predict human 
PPIs from the HPRD database. Their model obtained 
93.45% in accuracy, 89.84% in precision, 89.29% in 
sensitivity and 85.71% in Mcc. In Kopoin et al. [18], a 
distance function from the values of hydrophobicity [19] 
and hydrophilicity [20] of amino acids  was proposed to 
replace amino acid residues in the calculation of bigram. 
However, this method takes a long time to perform. 
In this work, we propose a method that quickly calculates 
the bigram with correlation values from the 
physicochemical properties of amino acids instead of 
amino acid residues. We have developed a correlation 
matrix obtained using the values of the hydrophobicity and 
hydrophilicity properties. This matrix is then used for the 
calculation of the bigram to have a much more informative 
and interesting characteristic vector. 
The rest of the document is organized as follows. We 
present in section 2 the data sets used. Section 3 is devoted 
to the detailed study of the proposed solution. Section 4 
deals with the analysis of the results obtained and section 5 
is devoted to the conclusion and future work. 

 

Fig. 1 Flowchart of our study 

2. Materials 

2.1 Benchmark dataset 

In this work, we propose the implementation of a PPI 
prediction model using only protein sequences. To do this, 
we need datasets that contain positive PPIs (interacting 
proteins) and negative PPIs (non-interacting proteins). The 
HPRD dataset is a reference dataset of human PPIs built 
from the work of Pan et al. [12], which can be viewed at 
csbio server 1 . The HPRD database is one of the most 
comprehensive databases for human PPI data. To ensure 
accurate representativeness of the data, double pairs of 
PPIs and pairs with sequences consisting of less than 50 
amino acids or multiple locations have been excluded. The 
positive data for this dataset (a total of 36630 positive 
interactions from 9630 different human proteins) were 
collected from the Human Protein Reference Database 
(HPRD, 2007 version). To form negative pairs, proteins in 
distinct subcellular locations were paired. This localization 
information was obtained by selecting only human 
proteins from version 57.3 of the Swiss-Prot database2. 
Indeed, one of the most common methods for obtaining 
negative PPI pairs is based on cell localization annotations 
[21]. Information on the cellular localization of proteins 
tells us that a protein can be divided into several types of 
proteins: nucleus, cytoplasm, endoplasmic reticulum, 
mitochondrion, Golgi apparatus, vacuole, and peroxisome. 
This information can be obtained from Swiss-Prot. PPI 
negative pairs are obtained by pairing proteins of one 
localization with proteins of another localization. Thus, 
36480 negative interactions were obtained from 1773 
proteins from 6 subcellular locations.   

 2.2 Other datasets 

To show the robustness of our method, we used four other 
different PPI datasets that are commonly used in the 
prediction of PPIs. The first set of IPP data is Homo 
Sapien dataset (H. Sapien), also collected from the HPRD 
data, described by Huang et al. [22], which consists of 
8161 pairs of human proteins (3899 interacting pairs and 
4262 non-interacting pairs). The second dataset is the IPP 
dataset described by You et al., [23]. This dataset is 
collected from the basic subset of S. Cerevisiae in the 
Protein Interaction Database (PID). This dataset consists 
of 5594 positive pairs and 5594 negative pairs, for a total 
of 11188 protein pairs. The third set of data is H. Pylori 
dataset that proposed by Martin et al. [24], consisting of 
2916 pairs of proteins including 1458 pairs which interact 

                                                           
1 http://www.csbio.sjtu.edu.cn/bioinf/LR_PP/Data.htm 
2 https://www.expasy.org/sprot/ 
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and 1458 pairs which do not interact. The last datasets 
namely E. Coli [25] consist of 6954 positive pairs. 
The various IPP datasets are in FASTA [26] format. The 
FASTA format facilitates manipulation and analysis of 
sequences using word processing tools and scripting 
languages such as the R programming language, Python, 
Ruby, and Perl. 

3. Methods 

3.1 Proposed extraction method 

The extraction method that we propose in this study will 
allow us to transform a sequence of characters into a 
sequence of numerical values reflecting the characteristic 
binding properties of any pair of amino acids. It combines 
the bigram technique and a correlation matrix obtained 
from the values of two physicochemical properties of 
amino acids which are hydrophobicity and hydrophilicity. 
This method, called BP2, is a variant of the BP method [18] 
which uses the values of a distance function obtained from 
the hydrophobicity and hydrophilicity values of the amino 
acids to calculate the bigram. Know that the 
hydrophobicity and hydrophilicity of the amino acids of a 
protein play a very important role in its folding, its 
interaction with other molecules, its structure as well as its 
catalytic function [27]. 
To calculate the bigram values, we do as follow: 
Consider a protein P composed of L amino acid residues: 

𝑅ଵ𝑅ଶ𝑅ଷ … 𝑅௅ିଵ𝑅௅                                                    (1) 

with R1, the residue at position 1 of the chain, R2, the 
residue at position 2 of the chain, R3, the residue at 
position 3 of the chain and so on. First, we use the derived 
values of hydrophobicity and hydrophilicity [20] to 
calculate their correlated functions (the original values can 
be found in [28]). Suppose that 𝐻ଵ

଴ and 𝐻ଶ
଴, are the original 

hydrophobicity value and the original hydrophilicity value 
of amino acid Ri (i = 1, 2 ..., 20), respectively, the derived 
values are calculated as follows: 
 

                 (2) 
where μ1 and μ2 are the mean of the hydrophobicity and 
hydrophilicity values of the 20 amino acids, respectively,  
𝐻ଵ

∗ and 𝐻ଶ
∗ are the correlated hydrophobicity and 

hydrophilicity functions defined as follows: 

𝐻௜,௝
ଵ ൌ 𝐻ଵ

∗ሺ𝑅௜ሻ ൈ 𝐻ଵ
∗൫𝑅௝൯   ;     𝐻௜,௝

ଶ ൌ 𝐻ଶ
∗ሺ𝑅௜ሻ ൈ 𝐻ଶ

∗൫𝑅௝൯    (3) 

Next, we will add the correlated hydrophobicity and 
hydrophilicity functions, denoted CF, according to the 
equation below: 

𝐶𝐹௜,௝ ൌ 𝐻௜,௝
ଵ ൅ 𝐻௜,௝

ଶ                                               (4) 

Now, to represent the different correlations along the 
protein of length L, we define a matrix M calculated as 
follows: 

𝑀௜,௝ ൌ ଵ

௜
𝐶𝐹௜,௝,          1 ൑ 𝑖 ൑ 𝐿;   1 ൑ 𝑗 ൑ 20         (5) 

where  
ଵ

௜
  represents is a rank weighting function. 

Finally, the frequency of occurrence BP2 of the transition 
from the i-th amino acid to the j-th amino acid is 
calculated as follows: 

𝐵𝑃ଶሺ௜௝ሻ ൌ ∑ 𝑀௧,௜ ൈ 𝑀௧ାଵ,௝
௅ିଵ
௧ୀଵ ,       1 ൑ 𝑖, 𝑗 ൑ 20   (6) 

with L the length of the sequence, 𝑀௧,௜, the value of the 
correlation matrix in the t-th row and i-th column and 
𝑀௧ାଵ,௝, the value of the correlation matrix in the (t+1)-th 
row and  j-th column. 
    This method applied to a protein sequence generates a 
400-D vector. To represent the pair of proteins, we 
concatenate the vector of each protein, resulting in a final 
800-D vector. 

3.2 Classification with SVM 

In this study, we used the SVM algorithm [9], [28]–[30], 
widely used in the literature for PPIs prediction. A SVM 
can be a problem of finding a hyperplane of equation 
𝑓ሺ𝑥ሻ ൌ 𝜔𝑥 ൅ 𝑏, (with 𝜔, a weight function) allowing to 
separate positive and negative observations. To do this, the 
notion of geometric margin is introduced and represents 
the distance between the separating band and the nearest 
points, called support vectors. The hyperplane is chosen to 
maximize the margin to better generalize to new 
observations. The SVM algorithm belongs to the class of 
supervised learning and kernel methods [31]. There are 
four main types of kernels including linear kernel, 
Polynomial kernel, Laplacian kernel, and Gaussian kernel. 

The classification performance of an SVM model 
strongly depends on three main parameters, including the 
capacitance parameter C, the gamma parameter (γ) and the 
kernel type k. The parameter C controls the trade-off 
between a fluid decision limit and error minimization. The 
gamma parameter (γ) determines the extent of influence of 
a single training example. The kernel k determines the 
learning ability of the SVM. For our case study, we used 
the Gaussian kernel because it has been shown to be an 
optimized option in most cases by previous studies, 
especially when the number of cases far exceeds the 
number of characteristics [12]. The parameters C and (γ) 
were optimized via a grid search. Finally, we have best 
parameter C equal to 2 and (γ)  equal to 1. 



IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.3, March 2021 
 

 

44

 

4. Results and analysis 
The codes were made with the python 3.7 language. The 
experiments were carried out on a machine with an i7 
processor with 8 GB of RAM. 
To evaluate our model, we used the following measures: 
Accuracy (Acc), Precision (Pre), Sensitivity (Sen), 
Matthews Correlation Coefficient (Mcc), Area under the 
ROC curve (AUC).  Some of these measures are defined 
as follows: 

                                   (7) 
 

                         (8) 
 

                          (9) 
 

 (10)  
 
TP (true positive) is the number of predicted positive PPIs, 
i.e., interact really, FP (false positive) is the number of 
predicted positive PPIs, but are negative really, TN (true 
negative) is the number of PPI predicted negative, and 
which are negative really, and FN (false negative) is the 
number of PPI predicted negative, but are positive really. 
MCC is a measure of the quality of the binary 
classification, which is a correlation from the coefficient 
between observed and predicted results. It returns a value 
between -1 (is considered a false prediction) and +1 (is 
considered an interesting prediction). The ROC curve and 
AUC value graphically illustrate the performance of a 
binary classification system. 

First, we used 5 cross-validations on human PPI data 
to evaluate the performance of our model and to avoid 
overlearning.  
In Table 1, we can see that the best performance is 
obtained in Step 4 with 95.68% in accuracy, 95.35% in 
precision, 96.03% in sensitivity, 96.03% in Mcc and 
95.58% in Auc. For all 5 cross-validations, we obtain 
respectively 94.75%, 95.12%, 96%, 95.01% and 95.55% 
in accuracy, precision, sensitivity, Mcc and AuC, 
respectively. 

Table 1: Results of cross-validation on the HPRD dataset  

Fold Acc  Pre Sen Mcc Auc 

1 94.48% 94.98% 96% 94.77% 95.48%
2 95.51% 95.01% 95.58% 94.13% 95.51%
3 93.67% 95.15% 95.67% 94.77% 95.57%
4 95.68% 95.35% 95.98% 95.02% 95.58%
5 94.42% 95.05% 96.03 % 95.69% 95.52%

mean 94.75% 95.12% 96% 95.01% 95.55%
std  % % % %

Std mean standard deviation 

 
In the following, we compare the performances of our 
method with those of certain methods of the literature that 
we have implemented: PAAC [8], APAAC [27], AC [9], 
CTD [32], BP [18] and Res2Vec [33]. The source codes 
for the PAAC and APAAC methods are available through 
csbio server (see section2). These two methods take a 
parameter λ, which indicates the order-sequence level. 
Both methods are computationally intensive as the 
parameter λ increases. λ is equal to 20 in the experiment as 
in [14]. The AC method uses the values of the 
physicochemical properties as well. In our case we have 
chosen six physicochemical properties as in [28], include 
hydrophobicity, hydrophilicity, polarity, polarizability, 
solvent-accessible surface area and net charge index of 
side chains. For the Res2vec method, we acquired the 
source code through GitHub 3 . This method uses two 
parameters including the size of the residue and the size of 
the window. For our case, we used residual dimension 
equal to 20 and a window size equal to 4 as in [33]. 
In the table below, we compare the performance results of 
our method with those of the other methods cited above on 
the HPRD data. We can see that our model performs 
96.96% in accuracy, 95.97% in precision, 96.09% in 
sensitivity and 94.76% in Mcc. Overall, our method shows 
superior performance with 0.36% more in accuracy, 0.5% 
more in precision, 0.07% more in sensitivity and 0.03% 
more in Mcc.  

Table 2: Performance results comparison on HPRD dataset  

Method Acc  Pre Sen Mcc 

AC 94.48% 95.08% 95,10% 94.73%
CTD 80.23% 81.44% 86.21% 80.12%

APAAC  95.75% 95.71% 95.78% 94.73%
BP 94.67% 95.05% 94.67% 94.37%

PAAC 83.64% 82.35% 84.03% 83.02%
Res2Vec 94.44% 95.15% 93.77% 94.09%

Our method 96.16% 95.97% 96.09% 94.76%
 
We present in the figure below the performance obtained 
with the ROC curve on HPRD dataset. The ROC area of 
our method is approximately 1% higher than the other 
approaches mentioned. All results show the reliability of 
the features extracted by our method that can improve the 
accuracy of predictions. 
 

                                                           
3 https://github.com/xal2019/DeepFE-PPI 
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Fig. 2 The ROC curve of different methods 

We also compared the performance results obtained by our 
method with those of the other methods cited above on the 
H. Sapiens data. For our method, we obtained 92.5% in 
accuracy, 91.70% in precision, 92% in sensitivity and 
90.89% in Mcc. The best precision is obtained by the 
APAAC method with 93.10%. 
We also compared the performance obtained on the 
S.Cerevisiae data set. The performances obtained by our 
method are 93.75%, 92.12%, 94% and 92.12% in accuracy, 
precision, sensitivity and Mcc, respectively. Our method 
performs well in almost all metrics with +0.3% more than 
the others, +0.4% more in sensitivity. On the other hand, 
the best accuracy is obtained by the Res2Vec method with 
93.05% against 92.12% for our method. 
The figure below gives us the performance results 
obtained on the H. Pylori data. Most of the methods show 
performances around 74% to 93% on about all metrics. 
These poor performances can be explained by the fact that 
the H. Pylori data are not large. The performances 
obtained by our method are 89.12%, 85.45%, 92.06% and 
79.93% respectively in accuracy, precision, sensitivity and 
Mcc, which surpasses those obtained by some methods in 
the literature. 
 

 

Fig. 3 The performance results comparison of different 
methods on S.Cerevisiae data 

For E. Coli data, (figure 4)  , our method is outperformed 
by the APAAC method with 93.79% compared to 92.98% 
for our method. The APAAC method extracts order-
sequence information, which is a reliable characteristic for 
the prediction of PPIs. However, compared to the AC, 
CTD, BP, Res2Vec and PAAC methods, our method has a 
better performance. 

 

Fig. 4 The performance results comparison of different 
methods on E. Coli data 

Here, we give the performance results obtained by our 
model and the model of other authors on HPRD data. We 
compared our results with those of Göktepe and Kodaz 
[14], You et al. [34], Xu et al. [35], Pan et al. [12] and You 
et al. [23]. The performances obtained by our model are 
96.16%, 95.97%, 96.29% and 94.09% in accuracy, 
precision, sensitivity and Mcc, respectively. 

Table 1: Results of cross-validation on the HPRD dataset  
Method Acc Pre Sen Mcc 

Kodaz  [14] 93.45% 89.84% 89.29% 85.71% 
You et al. [34] 84.8% 85.47% 84.08% 74.22% 
Xu et al. [35] 90.67% 89.15% 91.69% 91.77% 
Pan et al. [12] 97.95% N/A 96.26% 95.76 

ELM [23] 91.68% 91.35% 93% 89.02% 
Our method 96.16% 95.97% 96.29% 94.76% 

N/A mean Not Available.  
 We can see in table 3 that overall, our model presents 
good performances which are better than the performances 
displayed by other authors in the literature.  However, the 
LDA-RF model has a slightly better performance than ours 
in accuracy and Mcc. 

5. Conclusion 

Protein-protein interactions play an important role in 
therapeutic targeting.  With new diseases such as covid19 , 
research to identify protein-protein interactions is of great 
help in the search for drug solutions. As part of this work, 
we have proposed a feature extraction method for a better 
prediction of protein-protein interactions based on protein 
sequences. We tested our method on reference data sets 
including the HPRD, Homo Sapien and S. cerevisiae 
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datasets which are widely used for the prediction of PPIs. 
The results obtained allow us to say that our method is an 
interesting tool for feature extraction in large data. 
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