• Title/Summary/Keyword: Security Techniques

Search Result 1,571, Processing Time 0.024 seconds

Dimensionality Reduction of RNA-Seq Data

  • Al-Turaiki, Isra
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.31-36
    • /
    • 2021
  • RNA sequencing (RNA-Seq) is a technology that facilitates transcriptome analysis using next-generation sequencing (NSG) tools. Information on the quantity and sequences of RNA is vital to relate our genomes to functional protein expression. RNA-Seq data are characterized as being high-dimensional in that the number of variables (i.e., transcripts) far exceeds the number of observations (e.g., experiments). Given the wide range of dimensionality reduction techniques, it is not clear which is best for RNA-Seq data analysis. In this paper, we study the effect of three dimensionality reduction techniques to improve the classification of the RNA-Seq dataset. In particular, we use PCA, SVD, and SOM to obtain a reduced feature space. We built nine classification models for a cancer dataset and compared their performance. Our experimental results indicate that better classification performance is obtained with PCA and SOM. Overall, the combinations PCA+KNN, SOM+RF, and SOM+KNN produce preferred results.

Comprehensive review on Clustering Techniques and its application on High Dimensional Data

  • Alam, Afroj;Muqeem, Mohd;Ahmad, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.237-244
    • /
    • 2021
  • Clustering is a most powerful un-supervised machine learning techniques for division of instances into homogenous group, which is called cluster. This Clustering is mainly used for generating a good quality of cluster through which we can discover hidden patterns and knowledge from the large datasets. It has huge application in different field like in medicine field, healthcare, gene-expression, image processing, agriculture, fraud detection, profitability analysis etc. The goal of this paper is to explore both hierarchical as well as partitioning clustering and understanding their problem with various approaches for their solution. Among different clustering K-means is better than other clustering due to its linear time complexity. Further this paper also focused on data mining that dealing with high-dimensional datasets with their problems and their existing approaches for their relevancy

Phishing Email Detection Using Machine Learning Techniques

  • Alammar, Meaad;Badawi, Maria Altaib
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.277-283
    • /
    • 2022
  • Email phishing has become very prevalent especially now that most of our dealings have become technical. The victim receives a message that looks as if it was sent from a known party and the attack is carried out through a fake cookie that includes a phishing program or through links connected to fake websites, in both cases the goal is to install malicious software on the user's device or direct him to a fake website. Today it is difficult to deploy robust cybersecurity solutions without relying heavily on machine learning algorithms. This research seeks to detect phishing emails using high-accuracy machine learning techniques. using the WEKA tool with data preprocessing we create a proposed methodology to detect emails phishing. outperformed random forest algorithm on Naïve Bayes algorithms by accuracy of 99.03 %.

Tumor Segmentation in Multimodal Brain MRI Using Deep Learning Approaches

  • Al Shehri, Waleed;Jannah, Najlaa
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.343-351
    • /
    • 2022
  • A brain tumor forms when some tissue becomes old or damaged but does not die when it must, preventing new tissue from being born. Manually finding such masses in the brain by analyzing MRI images is challenging and time-consuming for experts. In this study, our main objective is to detect the brain's tumorous part, allowing rapid diagnosis to treat the primary disease instantly. With image processing techniques and deep learning prediction algorithms, our research makes a system capable of finding a tumor in MRI images of a brain automatically and accurately. Our tumor segmentation adopts the U-Net deep learning segmentation on the standard MICCAI BRATS 2018 dataset, which has MRI images with different modalities. The proposed approach was evaluated and achieved Dice Coefficients of 0.9795, 0.9855, 0.9793, and 0.9950 across several test datasets. These results show that the proposed system achieves excellent segmentation of tumors in MRIs using deep learning techniques such as the U-Net algorithm.

Computer Technologies as A Method to Create A Contemporary Ex-Libris

  • Romanenkova, Julia;Bratus, Ivan;Varyvonchyk, Anastasia;Sharikov, Denis;Karpenko, Olga;Tkachuk, Olena
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.332-338
    • /
    • 2022
  • The article is dedicated to the phenomenon of modern ex-libris created with the help of computer graphics. The process of evolution in the use of various techniques of book plate creating is analyzed, the role of computer technologies in the popularization of the modern book plate is emphasized. The debatable nature of the issue of the danger of displacement, replacement of traditional techniques of printed graphics with computer technologies is emphasized. Computer graphics are positioned as an effective way to popularize the Ukrainian ex-libris in the foreign art space. The characteristic features of the Ukrainian computer ex-libris are highlighted, a parallel with the book plate created with the help of computer graphics by masters of other countries (Belgium, China, the Netherlands, Poland, Turkey) is drawn

COLORNET: Importance of Color Spaces in Content based Image Retrieval

  • Judy Gateri;Richard Rimiru;Micheal Kimwele
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.33-40
    • /
    • 2023
  • The mainstay of current image recovery frameworks is Content-Based Image Retrieval (CBIR). The most distinctive retrieval method involves the submission of an image query, after which the system extracts visual characteristics such as shape, color, and texture from the images. Most of the techniques use RGB color space to extract and classify images as it is the default color space of the images when those techniques fail to change the color space of the images. To determine the most effective color space for retrieving images, this research discusses the transformation of RGB to different color spaces, feature extraction, and usage of Convolutional Neural Networks for retrieval.

Application of Topic Modeling Techniques in Arabic Content: A Systematic Review

  • Maram Alhmiyani;Huda Alhazmi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.1-12
    • /
    • 2023
  • With the rapid increase of user generated data on digital platforms, the task of categorizing and classifying theses huge data has become difficult. Topic modeling is an unsupervised machine learning technique that can be used to get a summary from a large collection of documents. Topic modeling has been widely used in English content, yet the application of topic modeling in Arabic language is limited. Therefore, the aim of this paper is to provide a systematic review of the application of topic modeling algorithms in Arabic content. Using a well-known and trusted databases including ScienceDirect, IEEE Xplore, Springer Link, and Google Scholar. Considering the publication date from 2012 to 2022, we got 60 papers. After refining the papers based on predefined criteria, we resulted in 32 papers. Our result show that unfortunately the application of topic modeling techniques in Arabic content is limited.

Matrix Formation in Univariate and Multivariate General Linear Models

  • Arwa A. Alkhalaf
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.44-50
    • /
    • 2024
  • This paper offers an overview of matrix formation and calculation techniques within the framework of General Linear Models (GLMs). It takes a sequential approach, beginning with a detailed exploration of matrix formation and calculation methods in regression analysis and univariate analysis of variance (ANOVA). Subsequently, it extends the discussion to cover multivariate analysis of variance (MANOVA). The primary objective of this study was to provide a clear and accessible explanation of the underlying matrices that play a crucial role in GLMs. Through linking, essentially different statistical methods, by fundamental principles and algebraic foundations that underpin the GLM estimation. Insights presented here aim to assist researchers, statisticians, and data analysts in enhancing their understanding of GLMs and their practical implementation in diverse research domains. This paper contributes to a better comprehension of the matrix-based techniques that can be extended to GLMs.

Formal Analysis of Distributed Shared Memory Algorithms

  • Muhammad Atif;Muhammad Adnan Hashmi;Mudassar Naseer;Ahmad Salman Khan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.192-196
    • /
    • 2024
  • The memory coherence problem occurs while mapping shared virtual memory in a loosely coupled multiprocessors setup. Memory is considered coherent if a read operation provides same data written in the last write operation. The problem is addressed in the literature using different algorithms. The big question is on the correctness of such a distributed algorithm. Formal verification is the principal term for a group of techniques that routinely use an analysis that is established on mathematical transformations to conclude the rightness of hardware or software behavior in divergence to dynamic verification techniques. This paper uses UPPAAL model checker to model the dynamic distributed algorithm for shared virtual memory given by K.Li and P.Hudak. We analyse the mechanism to keep the coherence of memory in every read and write operation by using a dynamic distributed algorithm. Our results show that the dynamic distributed algorithm for shared virtual memory partially fulfils its functional requirements.

Anomaly-Based Network Intrusion Detection: An Approach Using Ensemble-Based Machine Learning Algorithm

  • Kashif Gul Chachar;Syed Nadeem Ahsan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.107-118
    • /
    • 2024
  • With the seamless growth of the technology, network usage requirements are expanding day by day. The majority of electronic devices are capable of communication, which strongly requires a secure and reliable network. Network-based intrusion detection systems (NIDS) is a new method for preventing and alerting computers and networks from attacks. Machine Learning is an emerging field that provides a variety of ways to implement effective network intrusion detection systems (NIDS). Bagging and Boosting are two ensemble ML techniques, renowned for better performance in the learning and classification process. In this paper, the study provides a detailed literature review of the past work done and proposed a novel ensemble approach to develop a NIDS system based on the voting method using bagging and boosting ensemble techniques. The test results demonstrate that the ensemble of bagging and boosting through voting exhibits the highest classification accuracy of 99.98% and a minimum false positive rate (FPR) on both datasets. Although the model building time is average which can be a tradeoff by processor speed.