• Title/Summary/Keyword: Security Techniques

Search Result 1,571, Processing Time 0.03 seconds

Secure and Efficient Package Management Techniques in Closed Networks (폐쇄망에서의 안전하고 효율적인 소프트웨어 패키지 관리 방안)

  • Ahn, Gun-Hee;An, Sang-Hyuk;Lim, Dong-Kyun;Jeong, Su-Hwan;Kim, Jaewoo;Shin, Youngjoo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.4
    • /
    • pp.119-126
    • /
    • 2022
  • In this paper, we present important factors and methodologies that we have to follow for secure and efficient package management systems in a closed network. By analyzing previous works, we present several security considerations for the existing package management systems. Based on the consideration, we propose guidelines regarding the use of package management systems in the closed network. More specifically, we propose the development of new package management tools, utilization of physical storage media, utilization of local backup repositories, package updates, and downgrade batches for secure and efficient package management.

A Novel Dynamic Optimization Technique for Finding Optimal Trust Weights in Cloud

  • Prasad, Aluri V.H. Sai;Rajkumar, Ganapavarapu V.S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.2060-2073
    • /
    • 2022
  • Cloud Computing permits users to access vast amounts of services of computing power in a virtualized environment. Providing secure services is essential. There are several problems to real-world optimization that are dynamic which means they tend to change over time. For these types of issues, the goal is not always to identify one optimum but to keep continuously adapting to the solution according to the change in the environment. The problem of scheduling in Cloud where new tasks keep coming over time is unique in terms of dynamic optimization problems. Until now, there has been a large majority of research made on the application of various Evolutionary Algorithms (EAs) to address the issues of dynamic optimization, with the focus on the maintenance of population diversity to ensure the flexibility for adapting to the changes in the environment. Generally, trust refers to the confidence or assurance in a set of entities that assure the security of data. In this work, a dynamic optimization technique is proposed to find an optimal trust weights in cloud during scheduling.

A Pre-processing Process Using TadGAN-based Time-series Anomaly Detection (TadGAN 기반 시계열 이상 탐지를 활용한 전처리 프로세스 연구)

  • Lee, Seung Hoon;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.3
    • /
    • pp.459-471
    • /
    • 2022
  • Purpose: The purpose of this study was to increase prediction accuracy for an anomaly interval identified using an artificial intelligence-based time series anomaly detection technique by establishing a pre-processing process. Methods: Significant variables were extracted by applying feature selection techniques, and anomalies were derived using the TadGAN time series anomaly detection algorithm. After applying machine learning and deep learning methodologies using normal section data (excluding anomaly sections), the explanatory power of the anomaly sections was demonstrated through performance comparison. Results: The results of the machine learning methodology, the performance was the best when SHAP and TadGAN were applied, and the results in the deep learning, the performance was excellent when Chi-square Test and TadGAN were applied. Comparing each performance with the papers applied with a Conventional methodology using the same data, it can be seen that the performance of the MLR was significantly improved to 15%, Random Forest to 24%, XGBoost to 30%, Lasso Regression to 73%, LSTM to 17% and GRU to 19%. Conclusion: Based on the proposed process, when detecting unsupervised learning anomalies of data that are not actually labeled in various fields such as cyber security, financial sector, behavior pattern field, SNS. It is expected to prove the accuracy and explanation of the anomaly detection section and improve the performance of the model.

Fundamental Function Design of Real-Time Unmanned Monitoring System Applying YOLOv5s on NVIDIA TX2TM AI Edge Computing Platform

  • LEE, SI HYUN
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.22-29
    • /
    • 2022
  • In this paper, for the purpose of designing an real-time unmanned monitoring system, the YOLOv5s (small) object detection model was applied on the NVIDIA TX2TM AI (Artificial Intelligence) edge computing platform in order to design the fundamental function of an unmanned monitoring system that can detect objects in real time. YOLOv5s was applied to the our real-time unmanned monitoring system based on the performance evaluation of object detection algorithms (for example, R-CNN, SSD, RetinaNet, and YOLOv5). In addition, the performance of the four YOLOv5 models (small, medium, large, and xlarge) was compared and evaluated. Furthermore, based on these results, the YOLOv5s model suitable for the design purpose of this paper was ported to the NVIDIA TX2TM AI edge computing system and it was confirmed that it operates normally. The real-time unmanned monitoring system designed as a result of the research can be applied to various application fields such as an security or monitoring system. Future research is to apply NMS (Non-Maximum Suppression) modification, model reconstruction, and parallel processing programming techniques using CUDA (Compute Unified Device Architecture) for the improvement of object detection speed and performance.

Trends in Hardware Acceleration Techniques for Fully Homomorphic Encryption Operations (완전동형암호 연산 가속 하드웨어 기술 동향)

  • Park, S.C.;Kim, H.W.;Oh, Y.R.;Na, J.C.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.6
    • /
    • pp.1-12
    • /
    • 2021
  • As the demand for big data and big data-based artificial intelligence (AI) technology increases, the need for privacy preservations for sensitive information contained in big data and for high-speed encryption-based AI computation systems also increases. Fully homomorphic encryption (FHE) is a representative encryption technology that preserves the privacy of sensitive data. Therefore, FHE technology is being actively investigated primarily because, with FHE, decryption of the encrypted data is not required in the entire data flow. Data can be stored, transmitted, combined, and processed in an encrypted state. Moreover, FHE is based on an NP-hard problem (Lattice problem) that cannot be broken, even by a quantum computer, because of its high computational complexity and difficulty. FHE boasts a high-security level and therefore is receiving considerable attention as next-generation encryption technology. However, despite being able to process computations on encrypted data, the slow computation speed due to the high computational complexity of FHE technology is an obstacle to practical use. To address this problem, hardware technology that accelerates FHE operations is receiving extensive research attention. This article examines research trends associated with developments in hardware technology focused on accelerating the operations of representative FHE schemes. In addition, the detailed structures of hardware that accelerate the FHE operation are described.

Design of an efficient learning-based face detection system (학습기반 효율적인 얼굴 검출 시스템 설계)

  • Kim Hyunsik;Kim Wantae;Park Byungjoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.213-220
    • /
    • 2023
  • Face recognition is a very important process in video monitoring and is a type of biometric technology. It is mainly used for identification and security purposes, such as ID cards, licenses, and passports. The recognition process has many variables and is complex, so development has been slow. In this paper, we proposed a face recognition method using CNN, which has been re-examined due to the recent development of computers and algorithms, and compared with the feature comparison method, which is an existing face recognition algorithm, to verify performance. The proposed face search method is divided into a face region extraction step and a learning step. For learning, face images were standardized to 50×50 pixels, and learning was conducted while minimizing unnecessary nodes. In this paper, convolution and polling-based techniques, which are one of the deep learning technologies, were used for learning, and 1,000 face images were randomly selected from among 7,000 images of Caltech, and as a result of inspection, the final recognition rate was 98%.

Blockchain Framework for Occupant-centered Indoor Environment Control Using IoT Sensors

  • Jeoung, Jaewon;Hong, Taehoon;Jung, Seunghoon;Kang, Hyuna;Kim, Hakpyeong;Kong, Minjin;Choi, Jinwoo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.385-392
    • /
    • 2022
  • As energy-saving techniques based on human behavior patterns have recently become an issue, the occupant-centered control system is adopted for estimating personal preference of indoor environment and optimizing environmental comfort and energy consumption. Accordingly, IoT devices have been used to collect indoor environmental quality (IEQ) data and personal data. However, the need to safely collect and manage data has been emerged due to cybersecurity issues. Therefore, this paper aims to present a framework that can safely transmit occupant-centered data collected from IoT to a private blockchain server using Hyperledger fabric. In the case study, the minimum value product of the mobile application and smartwatch application was developed to evaluate the usability of the proposed blockchain-based occupant-centered data collection framework. The results showed that the proposed framework could collect data safely and hassle-free in the daily life of occupants. In addition, the performance of the blockchain server was evaluated in terms of latency and throughput when ten people in a single office participated in the proposed data collection framework. Future works will further apply the proposed data collection framework to the building management system to automatically collect occupant data and be used in the HVAC system to reduce building energy consumption without security issues.

  • PDF

Electrical Energy Production Using Biomass (바이오매스 기반 전기에너지 생산기술 동향 분석)

  • Jongseo Lee;Sang-Soo Han;Doyeun Kim;JuHyun Kim;Sangjin Park
    • New & Renewable Energy
    • /
    • v.19 no.1
    • /
    • pp.12-21
    • /
    • 2023
  • Governments and global companies are working towards using renewable sources of energy, such as solar, wind, and biomass, to reduce dependency on fossil fuels. In the defense sector, the new strategy seeks to increase the sustainable use of renewable energy sources to improve energy security and reduce military transportation. Renewable energy technologies are affected by factors such as climate, resources, and policy environments. Therefore, governments and global companies need to carefully select the optimal renewable energy sources and deployment strategies. Biomass is a promising energy source owing to its high energy density and ease of collection and harvesting. Many techniques have been developed to convert the biomass into electrical energy. Recently, diverse types of fuel cells have been suggested that can directly convert the chemical energy of biomass into electrical energy. The recently developed biomass flow fuel cell has significantly enhanced the power density several hundred times, reaching to ~100 mW/cm2. In this review, we explore various strategies for producing electrical energy from biomass using modern methods, and discuss the challenges and potential prospects of this method.

The evolution of the Human Systems and Simulation Laboratory in nuclear power research

  • Anna Hall;Jeffrey C. Joe;Tina M. Miyake;Ronald L. Boring
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.801-813
    • /
    • 2023
  • The events at Three Mile Island in the United States brought about fundamental changes in the ways that simulation would be used in nuclear operations. The need for research simulators was identified to scientifically study human-centered risk and make recommendations for process control system designs. This paper documents the human factors research conducted at the Human Systems and Simulation Laboratory (HSSL) since its inception in 2010 at Idaho National Laboratory. The facility's primary purposes are to provide support to utilities for system upgrades and to validate modernized control room concepts. In the last decade, however, as nuclear industry needs have evolved, so too have the purposes of the HSSL. Thus, beyond control room modernization, human factors researchers have evaluated the security of nuclear infrastructure from cyber adversaries and evaluated human-in-the-loop simulations for joint operations with an integrated hydrogen generation plant. Lastly, our review presents research using human reliability analysis techniques with data collected from HSSL-based studies and concludes with potential future directions for the HSSL, including severe accident management and advanced control room technologies.

A Study on Privacy Preserving Machine Learning (프라이버시 보존 머신러닝의 연구 동향)

  • Han, Woorim;Lee, Younghan;Jun, Sohee;Cho, Yungi;Paek, Yunheung
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.924-926
    • /
    • 2021
  • AI (Artificial Intelligence) is being utilized in various fields and services to give convenience to human life. Unfortunately, there are many security vulnerabilities in today's ML (Machine Learning) systems, causing various privacy concerns as some AI models need individuals' private data to train them. Such concerns lead to the interest in ML systems which can preserve the privacy of individuals' data. This paper introduces the latest research on various attacks that infringe data privacy and the corresponding defense techniques.