• Title/Summary/Keyword: Sector Stability Theory

Search Result 15, Processing Time 0.02 seconds

Post-buckling analysis of geometrically imperfect nanoparticle reinforced annular sector plates under radial compression

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Mollaee, Saeed;Barati, Mohammad Reza;Afshari, Behzad Mohasel;Hamouda, A.M.S.
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.21-30
    • /
    • 2020
  • Buckling and post-buckling behaviors of geometrically imperfect annular sector plates made from nanoparticle reinforced composites have been investigated. Two types of nanoparticles are considered including graphene oxide powders (GOPs) and silicone oxide (SiO2). Nanoparticles are considered to have uniform and functionally graded distributions within the matrix and the material properties are derived using Halpin-Tsai procedure. Annular sector plate is formulated based upon thin shell theory considering geometric nonlinearity and imperfectness. After solving the governing equations via Galerkin's technique, it is showed that the post-buckling curves of annular sector plates rely on the geometric imperfection, nanoparticle type, amount of nanoparticles, sector inner/outer radius and sector open angle.

Fuzzy-Sliding-Sector Control for Chattering Reduction (채터링 감소를 위한 퍼지 슬라이딩 섹터 제어)

  • Han, Jong-Kil;Son, Yong-Su
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.3
    • /
    • pp.211-216
    • /
    • 2009
  • Chattering phenomenon is still a large drawback of VSS. To overcome this problem, various approaches have been reported. A new notion of sliding sector has been proposed recently. In this paper, fuzzy control with time-varying boundary layer using the sliding sector theory with continued input function in the sector is proposed. This paper analyzes the stability, using Lyapunov function on the sliding sector. Computer simulation for inverted pendulum results in elimination of the chattering phenomenon.

  • PDF

Sliding Mode Control with Sliding Sector for Chattering Reduction (채터링 감소를 위한 슬라이딩 섹터를 갖은 슬라이딩 제어)

  • Han, Jong-Kil;Son, Yong-Su
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.3
    • /
    • pp.168-173
    • /
    • 2007
  • Chattering phenomenon is still a large drawback of VSS. To overcome this problem, various approaches have been reported. A new notion of sliding sector has been proposed recently. In this paper, new methods of the nonlinear system control using the sliding sector theory with continued input function in the sector is proposed. This paper analyzes the stability, using Lyapunov function on the sliding sector. computer simulation for inverted pendulum results in elimination of the chattering phenomenon.

  • PDF

Robust adaptive control by single parameter adaptation and the stability analysis (단일계수적응을 통한 강건한 적응제어시의 설계및 안정성 해석)

  • 오준호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.331-338
    • /
    • 1990
  • In adaptive control, the lack of persistent and rich excitation causes the estimated parameters to drift, which degrade the performance of the system and may introduces instability to the system in a stochastic environment. To solve the problem of the parameter drift, the concept of single parameter adaptation is presented. For the parameter identification, a priori error is directly used for adaptation error. The structure of the controller is based upon the minimum variance control technique. The stability and robustness analysis is carried out by the sector stability theorem for the second order system. The computer simulation is performed to justify the theoretical analysis for the various cases.

Tracking Control of Nonlinear System using the Variable Structure Control with Sliding Sector (슬라이딩 섹터를 갖은 가변구조제어를 이용한 비선형시스템의 추적제어)

  • Han, Jong-Kil;Son, Yong-Su
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.2
    • /
    • pp.67-74
    • /
    • 2007
  • Chattering phenomenon is still a large drawback of VSS. To overcome this problem, various approaches have been reported. A new notion of sliding sector has been proposed recently. Inside this sector, a kind of norm of the state decreases without control input. Therefore, so long as the state is constrained inside this sector, the norm of the state approaches to zero. The sliding sector theory is elementary study step and is studied about only linear systems. In this paper, new methods of the tracking control of unstable nonlinear systems using the sliding sector is proposed. This paper analyzes the stability, using Lyapunov function on the sliding sector. Through the computer simulations for an inverted pendulum system, it is verified that sliding sector control is capable to reduce the chattering.

  • PDF

Nonlinear Control using the Variable Structure Control with Sliding Sector (슬라이딩 섹터를 갖은 가변구조제어를 이용한 비선형제어)

  • 한종길;손영수;배상현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.807-814
    • /
    • 2004
  • Chattering phenomenon is still a large drawback of VSS. To overcome this problem, various approaches have been reported. A new notion of sliding sector has been proposed recently. Inside this sector, a kind of norm of the state decreases without control input. Therefore, so long as the state is constrained inside this sector, the norm of the state approaches to zero. The sliding sector theory is elementary study step and is studied about only linear systems. In this paper, new methods of stabilizing unstable nonlinear systems using the sliding sector is proposed. This paper analyzes the stability, using Lyapunov function on the sliding sector. Through the computer simulations for an inverted pendulum system, it is verified that sliding sector control is capable to reduce the chattering.

ROTUSTNESS LMPEROVEMENT OF DIRECT DECENTRALIZSD MODEL REFERENCE ADAPTIVE CONTROL

  • Chun, Hee-Young;Park, Gwi-Tae;Park, Seung-Kyu;Seo, Sam-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.856-861
    • /
    • 1989
  • The control of a class of large scale systems formed by an arbitrary linear interconnections of linear time-invariant subsystems with unknown parameters is investigated. An approach is developed for improving the robustness of such a large scale system. In doing so, the new parameter adaptation algorithm(PAA) is used and a sufficient condition of stability is discussed by using the sector theory.

  • PDF

Nanocomposite reinforced structures to deal with injury in physical sports

  • Guojiao Wang;Kun Peng;Hui Zhou;Guangyao Liu;Zhiguo Lou;Feng Pan
    • Advances in nano research
    • /
    • v.14 no.6
    • /
    • pp.541-555
    • /
    • 2023
  • The extensive use of polymeric matrix composites in the athletic sector may be attributed to its high strength-to-weight ratio, production economy, and a longer lifespan than conventional materials. This study explored the impact of carbon nanotubes on the properties of different composite field sports equipment components. The test specimens were fabricated using the compression molding technique. The insertion of carbon nanotubes increases mechanical properties related to the process parameters to account for an improvement in the stick sections' overall performance. The dynamic response of functionally graded reinforced nanocomposite wire structure is examined in this paper on the bases of high-order hyperbolic beam theory lined to the size-dependent nonclassical nonlocal theory under the external mechanical load due to the physical activities. Finally, the impact of different parameters on the stability of nanocomposite structures is discussed in detail.

The Robustness Improvement of Discrete-Time Direct Adaptive Controllers (이산치 직접 적응제어기의 견실성 향상)

  • 천희영;박귀태;박승규;권성하
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.3
    • /
    • pp.291-300
    • /
    • 1990
  • This paper presents a robust discrete-time direct adaptive pole-placement with new discrete parameter adaptation algorithm (PAA), the standard RLS is suitably modified by adding a term which is exponentially proportional to the filtered tracking error and using a signal normalization. It is shown that it makes the overall adaptive system more robust in the presence of disturbances or unmodeled dynamics. In order to discuss the robustness improvement by using the input-output stability theory, the overall adaptive control system is reformulated and the sector theory is applied. In addition, computer simulation results are presented to complement the theoretical development.

  • PDF

LMI based criterion for reinforced concrete frame structures

  • Chen, Tim;Kau, Dar;Tai, Y.;Chen, C.Y.J.
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.407-412
    • /
    • 2020
  • Due to the influence of nonlinearity and time-variation, it is difficult to establish an accurate model of concrete frame structures that adopt active controllers. Fuzzy theory is a relatively appropriate method but susceptible to human subjective experience to decrease the performance. To guarantee the stability of multi-time delays complex system with multi-interconnections, a delay-dependent criterion of evolved design is proposed in this paper. Based on this criterion, the sector nonlinearity which converts the nonlinear model to multiple rule base of the linear model and a new sufficient condition to guarantee the asymptotic stability via Lyapunov function is implemented in terms of linear matrix inequalities (LMI). A numerical simulation for a three-layer reinforced concrete frame structure subjected to earthquakes is demonstrated that the proposed criterion is feasible for practical applications.