• Title/Summary/Keyword: Sectional steel

Search Result 394, Processing Time 0.025 seconds

Optimum topology design of geometrically nonlinear suspended domes using ECBO

  • Kaveh, A.;Rezaei, M.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.667-694
    • /
    • 2015
  • The suspended dome system is a new structural form that has become popular in the construction of long-span roof structures. Suspended dome is a kind of new pre-stressed space grid structure that has complex mechanical characteristics. In this paper, an optimum topology design algorithm is performed using the enhanced colliding bodies optimization (ECBO) method. The length of the strut, the cable initial strain, the cross-sectional area of the cables and the cross-sectional size of steel elements are adopted as design variables and the minimum volume of each dome is taken as the objective function. The topology optimization on lamella dome is performed by considering the type of the joint connections to determine the optimum number of rings, the optimum number of joints in each ring, the optimum height of crown and tubular sections of these domes. A simple procedure is provided to determine the configuration of the dome. This procedure includes calculating the joint coordinates and steel elements and cables constructions. The design constraints are implemented according to the provision of LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Constitution). This paper explores the efficiency of lamella dome with pin-joint and rigid-joint connections and compares them to investigate the performance of these domes under wind (according to the ASCE 7-05), dead and snow loading conditions. Then, a suspended dome with pin-joint single-layer reticulated shell and a suspended dome with rigid-joint single-layer reticulated shell are discussed. Optimization is performed via ECBO algorithm to demonstrate the effectiveness and robustness of the ECBO in creating optimal design for suspended domes.

The automated optimum design of steel truss structures (철골 트러스 구조의 자동화 최적설계)

  • Pyeon, Hae-Wan;Kim, Yong-Joo;Kim, Soo-Won;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.1 s.1
    • /
    • pp.143-155
    • /
    • 2001
  • Generally, truss design has been determined by the designer's experience and intuition. But if we perform the most economical structural design we must consider not only cross-sections of members but also configurations(howe, warren and pratt types etc.) of single truss as the number of panel and truss height. The purpose of this study is to develope automated optimum design techniques for steel truss structures considering cross-sections of members and shape of trusses simultaneously. As the results, it could be possible to find easily the optimum solutions subject to design conditions at the preliminary structural design stage of the steel truss structures. In this study, the objective function is expressed as the whole member weight of trusses, and the applied constraints are as stresses, slenderness ratio, local buckling, deflection, member cross-sectional dimensions and truss height etc. The automated optimum design algorithm of this study is divided into three-level procedures. The first level on member cross-sectional optimization is performed by the sequential unconstrained minimization technique(SUMT) using dynamic programming method. And the second level about truss height optimization is applied for obtaining the optimum truss height by three-equal interval search method. The last level of optimization is applied for obtaining the optimum panel number of truss by integer programming method. The algorithm of multi-level optimization programming technique proposed in this study is more helpful for the economical design of plane trusses as well as space trusses.

  • PDF

Development of Drift Design Method for High-rise Buildings Considering Characteristics of Member Forces (부재력 특성을 고려한 설계변수를 사용한 고층건물 변위조절설계법 개발)

  • 서지현;박효선
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.215-222
    • /
    • 2004
  • Drift design methods using resizing techniques have been presented as a practical drift control methods of high-rise buildings. Most drift design methods using the resizing techniques have adopted the cross-sectional area as the design variables for all structural members in a structure. However, the cross-sectional area is not always governing sectional property for the structural members, but the governing sectional property of each member is dependent on the characteristics of member forces. In this paper, a drift design method using the sectional property related to the governing displacement participation factor as the design variable of each member is presented and applied to the drift design of 20-story steel frame-shear wall system. It can be noted from example test that drift design method considering member characteristics shows similar or somewhat better results in the view point of structural weights and the accuracy of displacement estimation.

CFD Analysis of Trap Effect of Groove in Lubricating Systems: Part I - Variation in Cross-Sectional Shape of Groove (그루브의 Trap 효과에 대한 CFD 해석: 제 1부 − 그루브 단면 형상의 변화)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.32 no.3
    • /
    • pp.101-105
    • /
    • 2016
  • Trap effect of groove is evaluated in a lubricating system using computational fluid dynamics (CFD) analysis. The simulation is based on the standard k-ε turbulence model and the discrete phase model (DPM) using a commercial CFD code FLUENT. The simulation results are also capable of showing the particle trajectories in flow field. Computational domain is meshed using the GAMBIT pre-processor. The various grooves are applied in order to improve lubrication characteristics such as reduction of friction loss, increase in load carrying capacity, and trapping of the wear particles. Trap effect of groove is investigated with variations in cross-sectional shape and Reynolds number in this research. Various cross-sectional shapes of groove (rectangular, triangle, U shaped, trapezoid, elliptical shapes) are considered to evaluate the trap effect in simplified two-dimensional sliding bearing. The particles are assumed to steel, and defined a single particle injection condition in various positions. The “reflect” boundary condition for discrete phase is applied to the wall boundary, and the “escape” boundary condition to “pressure inlet” and “pressure outlet” conditions. The streamlines are compared with particles trajectories in the groove. From the results of numerical analysis in the study, it is found that the cross-sectional shapes favorable to the creation of vortex and small eddy current are effective in terms of particle trapping effect. Moreover, it is found that the Reynolds number has a strong influence on the pattern of vortex or small eddy current in the groove, and that the pattern of the vortex or small eddy current affects the trap effect of the groove.

Surface Properties of Chromium Nitrided Carbon Steel as Separator for PEMFC (크롬질화처리한 저탄소강의 고분자 전해질 연료전지 분리판으로서의 표면특성)

  • Choi, Chang-Yong;Kang, Nam-Hyun;Nam, Dae-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.173-178
    • /
    • 2011
  • Separator of stack in polymer electrolyte membrane fuel cell (PEMFC) is high cost and heavy. If we make it low cost and lighter, it will have a great ripple. In this study, low carbon steel is used as base metal of separator because the cost of low carbon steel is very cheaper commercial metal material than stainless steels, which is widely used as separator. Low carbon steel has not a good corrosion resistance. In order to improve the corrosion resistance and electrolytic conductivity, low carbon steel needs to be surface treated. We made Chromium electroplated layer of $5{\mu}m$, $10{\mu}m$ thickness on the surface of low carbon steel and it was nitrided for 2 hours at $1000^{\circ}C$ in a furnace with 100 torr nitrogen gas pressure. Cross-sectional and surface microstructures of surface treated low carbon steel are investigated using SEM. And crystal structures are investigated by XRD. Interfacial contact resistance and corrosion tests were considered to simulate the internal operating conditions of PEMFC stack. The corrosion test was performed in 0.1 N $H_2SO_4$ + 2 ppm $F^-$ solution at $80^{\circ}C$. Throughout this research, we try to know that low carbon steel can be replaced stainless steel in separator of PEMFC.

A Study on the Uncertainty of Structural Cross-Sectional Area Estimate by using Interval Method for Allowable Stress Design

  • Lee, Dongkyuc;Park, Sungsoo;Shin, Soomi
    • Architectural research
    • /
    • v.9 no.1
    • /
    • pp.31-37
    • /
    • 2007
  • This study presents the so-called Modified Allowable Stress Design (MASD) method for structural designs. The objective of this study is to qualitatively estimate uncertainties of tensile steel member's cross-sectional structural designs and find the optimal resulting design which can resist all uncertainty cases. The design parameters are assumed to be interval associated with lower and upper bounds and consequently interval methods are implemented to non-stochastically produce design results including the structural uncertainties. By seeking optimal uncertainty combinations among interval parameters, engineers can qualitatively describe uncertain design solutions which were not considered in conventional structural designs. Under the assumption that structures have basically uncertainties like displacement responses, the safety range of resulting designs is represented by lower and upper bounds depending on given tolerance error and structural parameters. As a numerical example uncertain cross-sectional areas of members that can resist applied loads are investigated and it demonstrates that the present design method is superior to conventional allowable stress designs (ASD) with respect to a reliably structural safety as well as an economical material.

A minimum ductility design method for non-rectangular high-strength concrete beams

  • Au, F.T.K.;Kwan, A.K.H.
    • Computers and Concrete
    • /
    • v.1 no.2
    • /
    • pp.115-130
    • /
    • 2004
  • The flexural ductility of solid rectangular reinforced concrete beams has been studied quite extensively. However, many reinforced concrete beams are neither solid nor rectangular; examples include T-, ${\Gamma}$-, ${\Pi}$- and box-shaped beams. There have been few studies on the flexural ductility of non-rectangular reinforced concrete beams and as a result little is known about the possible effect of sectional shape on flexural ductility. Herein, the effect of sectional shape on the post-peak flexural behaviour of reinforced normal and high-strength concrete beams has been studied using a newly developed analysis method that employs the actual stress-strain curves of the constitutive materials and takes into account the stress-path dependence of the stress-strain curve of the steel reinforcement. It was revealed that the sectional shape could have significant effect on the flexural ductility of a concrete beam and that the flexural ductility of a T-, ${\Gamma}$-, ${\Pi}$- or box-shaped beam is generally lower than that of a solid rectangular beam with the same overall dimensions and the same amount of reinforcement provided. Based on the numerical results obtained, a simple method of ensuring the provision of a certain minimum level of flexural ductility to non-rectangular concrete beams has been developed.

Structural Performance of Concrete-encased Steel Columns using 800MPa Steel and 100MPa Concrete (800MPa 강재 및 100MPa 콘크리트를 적용한 매입형 합성기둥의 구조성능)

  • Kim, Chang-Soo;Park, Hong-Gun;Choi, In-Rak;Chung, Kyung-Soo;Kim, Jin-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.497-509
    • /
    • 2010
  • Five concrete-encased steel columns using high-strength steel($f_{ys}$=801MPa) and high-strength concrete($f_{ck}$=97.7MPa) were tested to investigate the eccentric axial load-displacement relationship. Test parameters included the type, yield strength, and spacing of lateral reinforcement, and also the eccentricity of axial load. To analyze the behavior of the column specimens, the nonlinear sectional analysis using strain-compatibility and confinement effect was performed. To examine the applicability of existing design codes for the composite sections using high-strength materials, the test results were also compared with the predictions by the nonlinear analysis and the design codes. The confinement effect of lateral reinforcement increased the ductility of concrete, and the moment capacity of the column specimens increased with the ductility of concrete. The prediction by the nonlinear analysis gave good agreement with the test results. On the other hand, the ACI 318 neglecting lateral confinement effect underestimated the strength of the column specimens, and the Eurocode 4 using complete plastic capacity of steel section overestimated.

Evaluation on Flexural Performance of Steel Plate Reinforced GLT Beams (강판 보강 집성재 보의 휨성능 평가 연구)

  • Park, Keum-Sung;Lee, Sang-Sup;Kwak, Myong-Keun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.2
    • /
    • pp.39-49
    • /
    • 2020
  • In this study, we will develop a hybrid cross-sectional shape of steel inserted type glued-laminated timber that can improve the strength of structural glued-laminated timber and maximize the ductility by using steel plate with excellent tensile and deformation ability. A total of three specimens were fabricated and the flexural performance test was carried out to evaluate the structural performance of the steel inserted type glued-laminated timber. In order to compare the effect of steel inserted glued-laminated timber, one structural glued-laminated timber test specimen composed of pure wood was manufactured. In addition, in order to evaluate the adhesion performance of the steel inserted, one each of a screw joint test specimen and a polyurethane joint test specimen was prepared. As a result, all the specimens showed the initial crack in the finger joint near the force point. This has been shown to be a cause of crack diffusion and strength degradation. The use of finger joints in the maximum moment section is considered to affect the strength and ductility of the glued-laminated timber beam. Polyurethane-adhesive steel inserted glued-laminated timber showed fully-composite behavior with little horizontal separation between the steel plate and glued-laminated timber until the maximum load was reached. This method has been shown to exhibit sufficient retention bending performance.

Prediction of the flexural overstrength factor for steel beams using artificial neural network

  • Guneyisi, Esra Mete;D'niell, Mario;Landolfo, Raffaele;Mermerdas, Kasim
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.215-236
    • /
    • 2014
  • The flexural behaviour of steel beams significantly affects the structural performance of the steel frame structures. In particular, the flexural overstrength (namely the ratio between the maximum bending moment and the plastic bending strength) that steel beams may experience is the key parameter affecting the seismic design of non-dissipative members in moment resisting frames. The aim of this study is to present a new formulation of flexural overstrength factor for steel beams by means of artificial neural network (NN). To achieve this purpose, a total of 141 experimental data samples from available literature have been collected in order to cover different cross-sectional typologies, namely I-H sections, rectangular and square hollow sections (RHS-SHS). Thus, two different data sets for I-H and RHS-SHS steel beams were formed. Nine critical prediction parameters were selected for the former while eight parameters were considered for the latter. These input variables used for the development of the prediction models are representative of the geometric properties of the sections, the mechanical properties of the material and the shear length of the steel beams. The prediction performance of the proposed NN model was also compared with the results obtained using an existing formulation derived from the gene expression modeling. The analysis of the results indicated that the proposed formulation provided a more reliable and accurate prediction capability of beam overstrength.