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Abstract 
 
This study presents the so-called Modified Allowable Stress Design (MASD) method for structural designs. The objective of this study is to 
qualitatively estimate uncertainties of tensile steel member’s cross-sectional structural designs and find the optimal resulting design which can 
resist all uncertainty cases. The design parameters are assumed to be interval associated with lower and upper bounds and consequently 
interval methods are implemented to non-stochastically produce design results including the structural uncertainties. By seeking optimal 
uncertainty combinations among interval parameters, engineers can qualitatively describe uncertain design solutions which were not 
considered in conventional structural designs. Under the assumption that structures have basically uncertainties like displacement responses, 
the safety range of resulting designs is represented by lower and upper bounds depending on given tolerance error and structural parameters. 
As a numerical example uncertain cross-sectional areas of members that can resist applied loads are investigated and it demonstrates that the 
present design method is superior to conventional allowable stress designs (ASD) with respect to a reliably structural safety as well as an 
economical material. 
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1. INTRODUCTION 

 
In tradition design procedures of structures are based on 

a combination of safety factors for the loads and 
knockdown factors for the strength. Both these factors 
have been utilized from the past five decades for designs 
of building structures and their members. 

There are at least two fundamental shortcomings to 
these traditional design procedures. First since the 
procedures were developed for conventional 
configurations, materials and familiar structural concepts, 
it may be difficult to apply to structures that have 
unconventional configurations, use new material systems 
and contain novel structural concepts. Consider, for 
example, the case of composite materials. Adaptations of 
traditional design procedures to account for larger scatter 
in composite properties and the sensitivity of composite 
structures to environmental effects and damages have led 
to a very conservative approach for designing composite 
structures. In this approach it is assumed in essence that a 
“worst case scenario” occurs simultaneously for each 
design condition, e.g. temperature, moisture, damage, 
loading and so on. These result in substantial and 
unnecessary weight penalties. 

The second shortcoming of traditional design 
procedures is that measurements of the safety and 
reliability are not available. As a result it is not possible to 
determine (with any precision) the relative importance of 
various design options on the safety of building structures. 
In addition with no measurement of the safety it is unlikely 
that there is a consistent level of the safety and the 
efficiency throughout the building structure. That situation 
may lead to excessive weight without corresponding 
improvement in overall safety. 

A new structural design procedure based on the design 

concept considering uncertainties based non-stochastic 
methods can help in order to overcome many of these 
problems. In particular since a stochastic method for exact 
measurements of safety and reliability is expensive during 
the design process and has limits of the adaptation, the 
approach based on non-stochastic methods, the so-called 
interval method, allows the designer to produce a 
consistent level of safety and efficiency as characteristics 
of the structure -no unnecessary over - designs in some 
areas. 

Since the mid-1960s, a Moore-computability called the 
interval analysis has been introduced by Moore (1966) for 
bounding solutions of initial value problems. Koylouglu, 
Cakmak and Nielsen (1995) extended the original 
application to the treatment of uncertainty of loading 
conditions and structural parameters. However it is 
difficult to apply these results to practical structural 
engineering problems, because of the complexity of the 
algorithm. 

Rao and Berke (1997) and Rao and Chen (1998) have 
developed different versions of interval analysis based on 
finite element methods. Although these works were mainly 
restricted to narrow intervals and approximate numerical 
solutions, it is very important that interval analyses were 
actually applied to measure practical structures, for 
example, beams and frames. 

In this study interval methods are used in order to 
represent uncertainties of structural parameters. Interval 
solutions do not give the details of probability density 
description, however each uncertain parameter can be 
defined using two real number: the upper and lower bound. 

In order to perform cross-sectional area design of steel 
members, we proposes the so-called “Modified Allowable 
Structural Design”, i.e. MASD and intuitive result data by 
the interval methods are investigated quantitatively by 
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using a normal probability density function as illustrated in 
the following Section 4. 
  In this study uncertainties of variables such as structural 
parameters, yielding stresses and loading conditions are 
only considered for structural designs. Error of 
workmanship and structural properties by environmental 
conditions are excluded. Uncertainties of these variables 
are expressed by intervals containing tolerance error x . It 
represents the existence or non-existence of structural 
uncertainties, which consist of combinations of initial data 
such as a tree graph as shown in Figure 1. 

Figure 1. Tree graph representing structural uncertainties of initial data 

Design conditions can be described by interval change 
functions which are composed of upper and lower bounds 
and the functions are introduced in the next Section 3.1. 

Numerical examples verify the superiority and the 
efficiency of the proposed method in comparisons to 
classical allowable stress designs. 

 
2. MATHEMATICAL BACKGROUND  

 
2.1 Computability on Continuous Domain with Real 

Intervals 
This Section illustrates that the continuous domain of 

real intervals to give a computational foundation of 
interval arithmetic is effectively given and allows us to 
define a computability notion on the interval analysis, the 
so-called Moore-computability. So the continuous domain 
of real intervals is defined as ( ) C ,RIR = , where                            

 ( ) [ ]{ } [ ]{ }  ,    s r   and  R  s r,  :  s ,r RI ∞+∞−∪≤∈=  (1)        
 [ ] [ ] s  u  andt   r   if, only  and  if,  u ,t  s ,r ≤≤⊆      (2) 

with ≤  being the usual “less or equal” order on the 
extended real numbers. 
  The below relation associated to this continuous domain 
is defined by 

[ ] [ ] s u  andt  r   if,  only  and  if,  u ,t    s ,r <<<<    (3) 
The total elements of R  are the sets of all degenerate 
intervals as follows. 

( ) [ ]{ } R r    /r ,r RTotal ∈=              (4) 
Since each degenerate interval [ ]r ,r  has associated the 
real number r , the total elements of the continuous 
domain R  can be considered as the set of real numbers. 
A countable base for this continuous domain is the rational 
intervals, i.e. the set ( ) [ ]{ } w  v  and  S  w v,  :  w ,v SI <∈= . 
Therefore we can have a notion of computable real interval 

and computability of interval function. 
For many operations, including standard arithmetic 

operations of addition, subtraction, multiplication and 
division, the resulting sets are represented as intervals that 
can be conveniently defined in term of end-points of the 
argument intervals. 

The following functions from ( )nRI  in ( )RI  are 
interval arithmetic of Moore-computability and can be 
recovered from their rational interval restrictions which are 
clearly computable. 

Let ]X,X[XI =  and ]Y,Y[YI =  be the intervals, 
then the operations are defined by the following formulas: 

]YX,YX[]Y,Y[]X,X[YX II ++=+=+    (5) 

]YX,YX[]Y,Y[]X,X[YX II −−=−=−    (6) 

]Y,Y[]X,X[YX II ×=×  

),YX,YX,YX,YX[min( ⋅⋅⋅⋅=

)]YX,YX,YX,YXmax( ⋅⋅⋅⋅     (7) 

 ]Y,Y/[]X,X[Y/X II =   

[ ]
 

otherwise    ,   ,

]Y,Y[   0  if    ,  
Y

,
Y

]X,X [

⎪
⎩

⎪
⎨

⎧

∞+∞−

∈⎥
⎦

⎤
⎢
⎣

⎡
×

=
11

(8) 

Commonly useful notions are the mid-point of an 
interval cX  

2
XXXc +

=                              (9) 

and the uncertainty of an interval ΔX  

2
XXΔX −

=                             (10) 

 
2.2 The Sample Statistics to the Normal Probability 
Density Function 

Conceptually and quantitatively, in order to investigate 
data by interval methods, it is usually desirable to have a 
continuous mathematical function. A probability density 
function (PDF) is such a mathematical function. It is 
assumed in this study that the data by the interval method 
is identified with the random variable, which can take on 
any value on the real line. There are several probability 
density functions which are used frequently in the 
structural engineering, but this study introduces normal 
probability density function (NPDF) which can easily 
apply to uncertainty problems. 

The normal probability density function is defined as 
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where ∞≤≤−∞ x , −∞>> b  ,a 0 . 
The mean of X  is 
 bX =      (12) 

And its variance is 
   22 aσ x =      (13) 

The degree Θ  of uncertainty of probabilistic model is 
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written as follows. 

( )%   
X
σ x=Θ            (14) 

 
3. MODIFIED ALLOWABLE STRESS DESIGN (MASD) 

 
3.1 Interval Change Function (ICF) 
In the tensile structures with the uncertainty of variables 

which consist of steel materials, it is reasonable to introduce 
an interval change function that contains the uncertainties of 
structural parameters, yielding stresses and loading 
conditions. They denote design variables in cross-sectional 
designs. Since the uncertain variables are changeable values 
between upper and lower bounds defined by intervals in 
structural systems, the values of analytical results vary 
between certain upper and lower bound. 

The interval change function which is composed of the 
upper and lower bounds is a mathematical formulation with 
respect to the tolerance error x . The basic idea behind this 
function is qualitatively to calculate the variations to the 
required results that take place when a small change (i.e. 
uncertainty) is made by the uncertain variables against some 
nominal values in the structural system. 

Considering if numerical uncertainties of the structural 
variables exist or not, generalized scenario function for the 
uncertainty, i.e. interval change function iÎ  may be 
defined as follows. 

[ ]iic
p

ccc

c
q

ccc

aaaa
bbbb

)x(g,)x(f ˆ
321

321

⋅⋅⋅⋅

⋅⋅⋅⋅
=iI  (15) 

where 
    ca , cb  :  Mid-point of each uncertain parameter 
    i  :  2p+q, Number of the uncertainty scenario 
    p , q  :  Number of uncertain parameters 

    ( )
( )p

q

i
x
x)x(f

+

−
=

1
1  :  ICF for lower bound 

    ( )
( )p

q

i
x
x)x(g

−

+
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1
1  :  ICF for upper bound 

x  : Tolerance error, 10 <≤ x , R    x ∈  
 

3.2 Design Formulation and Numerical Algorithm 
Uncertain variables are expressed as the formulation of 

the upper and lower bound functions. Using interval 
change functions, the governing equation of the modified 
allowable stress design is written as follows.  

[ ]
ζ
f̂

f̂)x(g ,)x(f
Â
N̂σ̂ y

tii
n

t =≤==           (16) 

where i)x(f  and i)x(g  denote interval change functions 
of the lower and upper bounds, respectively. x  is the 
tolerance error which is 10 <≤ x  R    x ∈  about real 
value R . ζ  is the factor of safety. yf̂  and tf̂  are 
respectively the design yielding strength and the design 
allowable stress of tension about the steel material 
structure. nÂ  is the effective cross-sectional area of 

members. N̂  is the applied internal force and assumed as 
response results by the finite element method. 

Expanding the lower or upper bound of Eq. (16), the 
relation between the tolerance error and the safety factor is 
rewritten as follows. 

( )
( ) ( )[ ]

max

miny

xg,xf
f̂

ζ ≤                     (17) 

The MATHEMATICA Version 4.0 and the FORTRAN 
POWER STATION Version 4.0 are implemented to 
perform the structural analysis based on interval methods 
and calculate optimal tolerance errors and safety factors. 

The numerical algorithm of MASD is shown in Figure 2. 

Figure 2. MASD algorithm for the cross-sectional area design based on 
the interval method 

4. NUMERICAL EXAMPLE 
 

A numerical example testing the present method is 
discussed here. The considered structure is composed of 
the two-dimensional 6 truss members. Its structural 
mechanism is shown in Figure 3. 

 
Figure 3. Loading-displacement mechanism of plane truss structure 
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The details of the rivet connectivity in the tensile design 
of the steel material and required structural parameters are 
shown in Figure 4. Standard cross-section properties of the 
rivet and steel members appear in Table 1 and 2. It is 
assumed that horizontal axial forces apply only in the 
structural connectivity, for example in node 1, and design 
variables with properties of the uncertainty are defined as 
yielding stress yf̂ , internal force N̂  and effective cross-

sectional area nÂ . Here nÂ  is the formulation with 

uncertainty terms of the thickness of steel t̂ , the width of 
steel b̂  and the radius of rivet hole d̂ . 

Table 1. Steel properties of the standard section 

Steel properties of standard section 
TYPE t (mm) b (mm) 

Section 
 Area (cm2)

A 16 150 24.0 
 

Table 2. Rivet properties of the standard section 

TYPE River radius 
(mm) 

Rivet hole 
radius (mm) 

Yielding 
stress (t/cm2)

a 20 21.5 2.4 
b 20 21.5 3.3 

 
  The relationship between the safety factor and tolerance 
error with the upper and lower bounds of the interval 
change function for each yielding stress are shown in Table 
3 and Figure 5, where the horizontal and vertical axes 
denote the tolerance error and the safety factor, 
respectively. Practically the value of tolerance errors can 
not be large values for structural design. Thus tolerance 
errors must be decided by being compared with values of 
the safety factor. Through using limit values of the 
tolerance error and the safety factor, we can process the 
flexible design. This is the goal of the MASD algorithm. 
  In case of the safety factor = 1.5 (i.e. in conventional 
Allowable Stress Design or ASD), the limit of the 
tolerance error x  (1.0E-02%) is shown in Figure 6 (b). 
The limited tolerance errors of certain or uncertain 
properties of yielding stress are changed by their scenario 
combinations of the uncertainty and we must determine the 
minimum of them, since the minimum can only cover all 

combinations with non-stochastic methods to save the 
structural safety. Thus in yielding stresses 2.4 t/cm2 and 
3.3 t/cm2, the limited values are respectively 1.41 % and 
5.91 % in case 3rd-combination. 

Maximums of the safety factor can be produced through 
minimums of the tolerance error and are shown in Figure 
6(a). In yielding stresses 2.4 t/cm2 and 3.3 t/cm2, maximal 
safety factor are respectively 1.64 and 2.26 in case 16th-
combination. Therefore, in comparisons to the 
conventional value (i.e. 1.5) for the structural design, we 
can modify this value as flexible values including 
characteristics of uncertainties without the fracture of the 
structural system. Figure 7 (a) and (b) show uncertain 
cross-sectional areas described as upper and lower bounds 
in yielding stresses 2.4 t/cm2 and 3.3 t/cm2, respectively. 
From Figure 8, it can be seen that results of MASD are 
effective in the cross-sectional area design. In the yielding 
stress = 2.4 t/cm2 and 3.3 t/cm2, error values in compared 
to final design results by the conventional ASD are 
respectively 1.56 % and 3.89 %. 
 

(a) fy=2.4 t/cm2 
 

(b) fy=3.3 t/cm2 

Figure 5. Interval change function: relationship among tolerance error and 
safety factor for 16 cases of scenarios and Exact value of safety error=1.5 

  Uncertainty degrees of the yielding stresses 2.4 t/cm2 
and 3.3 t/cm2 are visualized as follows through a 
mathematical function which denotes a normal probability 
density function conceptually and quantitatively. The value 
of the upper bound is overestimated for the degree of the 
safety of the structural design both the yielding stresses 2.4 
t/cm2 and 3.3 t/cm2 and is shown in Figures 9 and 10. 

Figure 4. Section shape of connectivity in steel members 
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  (a) Change and flexibility of safety factor with fixed tolerance error       (b) Change and flexibility of tolerance error with fixed safety factor 

Figure 6. The flexible values of tolerance error and safety factor as each case combination of uncertain parameters 
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The degree of uncertainty of models of the yielding 
stress 3.3 t/cm2 (i.e. the degree of uncertainties is the lower 
bound=0.09 and the upper bound=0.117) is greater than 
that of the yielding stress 2.4 t/cm2 (i.e. the degree of 
uncertainties is the lower bound 0.024 and the upper 
bound=0.025). 

 

 (a) Uncertain area, in yielding stress = 2.4t/cm2 

(b) Uncertain area, in yielding stress = 3.3t/cm2 

Figure 7. Uncertainties of cross-section area in truss through the MASD 
and ASD by each scenario 

Figure 8. Error of results comparison with the MASD and conventioanl 
ASD, yielding stress of steel with 2.4 t/cm2 and 3.3 t/cm2 

 

(a) Normal PDF of the lower bound of the cross-sectional area, 
mean=14.3078, standard deviation =0.344754, value of ASD=12.5, 
selected design value=13.68 

 
(b) Normal PDF of the upper bound of the cross-sectional area, 
mean=13.06457, standard deviation =0.336585, value of ASD=12.5, 
selected design value=13.68 

Figure 9. Normal probability density function of cross-sectional area 
values of (a) lower bound and (b) upper bound by MASD in yielding 
stress=2.4 t/cm2 and 32 cases of uncertainty scenarios 

 

(a) Normal PDF of the lower bound of the cross-sectional area, 
mean=16.3417, standard deviation =1.472173, value of ASD=9.09091, 
selected design value=13.68 
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(b) Normal PDF of the upper bound of the cross-sectional area, 
mean=11.16869, standard deviation =1.316579, value of ASD=9.09091, 
selected design value=13.68 

Figure 10. Normal probability density function of cross-sectional area 
values of (a) lower bound and (b) upper bound by MASD in yielding 
stress=3.3 t/cm2 and 32 cases of uncertainty scenarios 

 
5. CONCLUSIONS 
 

This study addresses a non-stochastic innovative method 
in order to determine the favorable cross-sectional area of 
steel truss members with respect to structural uncertainties, 
which can appropriately resist in applied stresses. This 
method is a modified version of the allowable stress 
designs and yields approximate solutions with the lower 
and upper bounds. The present method allows the 
engineering practice to intuitively account for uncertain 
conditions in structural designs of members and to 
calculate very sharp bounds on the system response for all 
possible scenarios of uncertainty, existing in a single 
analysis. 

The extended form of interval methods is appropriate 
for practically applying structural uncertainties, when the 
parameter uncertainties are reasonably small. In practice, 
in most cases the structural parameter errors or 
uncertainties are small. 

The numerical example demonstrates that the present 
method provides the safety as well as the effective usage 
of materials for designing cross-sectional areas of steel 
truss members with response uncertainties which result 
from uncertainties of structural parameters. 
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