• Title/Summary/Keyword: Section modulus

Search Result 240, Processing Time 0.026 seconds

LOGARITHMIC CAPACITY UNDER CONFORMAL MAPPINGS OF THE UNIT DISC

  • Chung, Bohyun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.463-470
    • /
    • 2010
  • If P(f, r) is the set of endpoints of radii which have length greater than or equal to r > 0 under a conformal mapping f of the unit disc. Then for large r, the logarithmic capacity of P(f, r), $\frac{1}{\sqrt[2]{r}}{\leq}cap(P(f,r)){\leq}\frac{k}{\sqrt{r}}$. Where k is the positive constant.

Study on Section Properties of Asymmetric-Sectioned Vessels (선박의 비대칭 단면 특성에 대한 연구)

  • Choung, Joon-Mo;Kim, Young-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.843-849
    • /
    • 2010
  • This paper presents definition of symmetry of a ship section where three symmetries are proposed: material, geometric, and load symmetries. Precise terminologies of centroid, moment plane, and neutral axis plane are also defined. It is suggested that force vector equilibrium as well as force equilibrium are necessary condition to determine new position of neutral axis due to translational and rotational mobility. It is also stated that new reference datum of ENMP(elastic neutral moment plane), PNMP(fully plastic moment plane), ENAP(elastic neutral axis plane), and INAP(inelastic neutral moment plane) are required to define asymmetric section properties such as second moment of area, elastic section modulus, yield moment, fully plastic moment, and ultimate moment. Since collision-induced damage and flooding-induced biaxial bending moment produce typical asymmetry of section, the section properties are calculated for a typical VLCC. Geometry asymmetry is determined from ABS and DNV rules and two moment planes of 0/30 degs are assumed for load asymmetry. It is proved that the property reduction ratios directly calculated from second moment of area are usually larger than area reduction ratio. Reduction ratio of ultimate moment capacity shows almost linearly proportional to area reduction ratio. Mobility of elastic and inelastic neutral axis planes is visually provided.

The Influence of Water Storage on Mechanical Properties of Adhesive Resin (수중 보관이 접착용 레진의 물리적 성질에 미치는 영향)

  • Kim, Won-Chan;Lee, Kwang-won;Lee, Jeong;Yu, Mi-Kyoung;Kim, Jeong-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.2
    • /
    • pp.193-202
    • /
    • 2006
  • Objective To evaluate the influence of water storage on the mechanical properties of dental adhesives over 1 and 3 months. Materials and Methods Adhesive resin sheets were prepared by pouring either All-bond 2(AB), Clearfil SE Bond(SE) into a mold measuring $15{\times}15{\times}0.9mm$. After solvent in primer evaporation, the adhesives were light-cured and removed from the mold and divided in two pieces, trimmed to hourglass shape that were used to determine the micro-tensile strength(MTS). Another hourglass shaped metal mold measuring $2.0{\times}1.5mm$ in cross-section area was made to determine the Young's modulus(E). Adhesive specimens for Young's modulus(E) were prepared in the same method. Specimens were stored at $37^{\circ}C$ in distilled water and tested after 1 and 3 months. The data were analyzed by one-way ANOVA and Tukey's test. Results Water storage significantly decreased the micro-tensile strength(MTS) of AB and SE specimens after 1 and 3 months(P<0.05). The Young's modulus(E) were also decreased after water storage for 1 and 3 months, but statistically not significant in each group of AB and SE group respectively. Conclusions Long-term exposure of adhesive resin to water can cause reduction of mechanical properties. It may compromise resin/dentin bonds and affect longevity of restorations.

Cross-Sectional Imaging of Elastic Modulus for Railway Trackbed under Ballast for Identification of Potential Settlement (침하가능성 확인을 위한 자갈도상 철도노반의 탄성계수 단층영상화)

  • Joh, Sung-Ho;Hwang, Seon-Keun;Hassanul, Raja;Abd Rahman, Norinah
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.256-261
    • /
    • 2011
  • Recently a limited section of trackbed with ballast at KTX railway were reported to have settled down and led to problems such as reduced speed and passenger discomfort. Therefore, an urgent remedy for the settled trackbed is required to recover normal operation of KTX trains. In this paper, a new technique is proposed to visualize the elastic modulus of cross sections at railway trackbeds under ballast for practical identification of potential settlement. The proposed technique is based on ICSW technique, enabling use of impact source and overcoming inherent limitations of CSW method. To verify validity and feasibility of the proposed method, the method was employed to construct cross-sectional images of elastic modulus of two railway trackbeds and compared with other tests such as SASW, PBT, DCP and portable FWD tests.

Evaluation of State of Concrete Pavement Sublayers Considering Direction of FWD (FWD 방향을 고려한 콘크리트 포장 하부 상태 평가)

  • Lee, Jae Hoon;Lee, Jae Hoon;Sohn, Dueck Su;Liu, Ju Ho;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.69-78
    • /
    • 2014
  • PURPOSES : The purpose of this paper is showing that the state of pavement sublayers can be evaluated differently according to direction of FWD. METHODS : The concrete pavement slabs above subgrade without anything, subgrade with cavity, and box culvert were modeled by finite element method(FEM). The modeled pavements were analyzed by changing the direction of falling weight deflectometer(FWD). The deflection results obtained from FEM were used to calculate radius of relative stiffness and composite modulus of subgrade reaction using AREA method. Then, the analyzed results were compared to the results of the test performed at the Korea Expressway Corporation(KEC) test road. RESULTS : The composite modulus of subgrade reaction increased with subgrade elastic modulus, while radius of relative stiffness decreased. The pavement sections of pure earth showed the consistent results regardless of FWD direction. In case there was cavity, the radius of relative stiffness was larger and composite modulus of subgrade reaction was smaller when FWD was leaving the cavity than when approaching the cavity. This pattern became clear when the cavity got larger. In case of the section with box culvert, the pattern was opposite to the case of cavity. When the soil cover depth increased, the effect of box culvert got smaller. When the load was applied far from the cavity and box culvert, the effect was also declined. The test performed at the KEC test road showed identical results to those of finite element analysis. CONCLUSIONS : The direction of FWD should be considered in evaluation of the state of pavement sublayers because it can be evaluated differently even under identical condition.

Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach

  • Eltaher, Mohamed A.;Almalki, Talaal A.;Ahmed, Khaled I.E.;Almitani, Khalid H.
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.39-49
    • /
    • 2019
  • This paper focuses on two main objectives. The first one is to exploit an energy equivalent model and finite element method to evaluate the equivalent Young's modulus of single walled carbon nanotubes (SWCNTs) at any orientation angle by using tensile test. The calculated Young's modulus is validated with published experimental results. The second target is to exploit the finite element simulation to investigate mechanical buckling and natural frequencies of SWCNTs. Energy equivalent model is presented to describe the atomic bonding interactions and their chemical energy with mechanical structural energies. A Program of Nanotube modeler is used to generate a geometry of SWCNTs structure by defining its chirality angle, overall length of nanotube and bond length between two adjacent nodes. SWCNTs are simulated as a frame like structure; the bonds between each two neighboring atoms are treated as isotropic beam members with a uniform circular cross section. Carbon bonds is simulated as a beam and the atoms as nodes. A finite element model using 3D beam elements is built under the environment of ANSYS MAPDL environment to simulate a tensile test and characterize equivalent Young's modulus of whole CNT structure. Numerical results are presented to show critical buckling loads, axial and transverse natural frequencies of SWCNTs with different orientation angles and lengths. The understanding of mechanical behaviors of CNTs are essential in developing such structures due to their great potential in wide range of engineering applications.

The influence of MgO on the radiation protection and mechanical properties of tellurite glasses

  • Hanfi, M.Y.;Sayyed, M.I.;Lacomme, E.;Akkurt, I.;Mahmoud, K.A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2000-2010
    • /
    • 2021
  • Mechanical moduli, such as Young's modulus (E), Bulks modulus (B), Shear modulus (S), longitudinal modulus (L), Poisson's ratio (σ) and micro Hardness (H) were theoretically calculated for (100-x)TeO2+x MgO glasses, where x = 10, 20, 30, 40 and 45 mol%, based on the Makishima-Mackenzie model. The estimated results showed that the mechanical moduli and the microhardness of the glasses were improved with the increase of the MgO contents in the TM glasses, while Poisson's ratio decreased with the increase in MgO content. Moreover, the radiation shielding capacity was evaluated for the studied TM glasses. Thus, the linear attenuation coefficient (LAC), mass attenuation coefficient (MAC), transmission factor (TF) and half-value thickness (𝚫0.5) were simulated for gamma photon energies between 0.344 and 1.406 MeV. The simulated results showed that glass TM10 with 10 mol % MgO possess the highest LAC and varied in the range between 0.259 and 0.711 cm-1, while TM45 glass with 45 mol % MgO possess the lowest LAC and vary in the range between 0.223 and 0.587 cm-1 at gamma photon energies between 0.344 and 1.406 MeV. Furthermore, the BXCOM program was applied to calculate the effective atomic number (Zeff), equivalent atomic number (Zeq) and buildup factors (EBF and EABF) of the glasses. The effective removal cross-section for the fast neutrons (ERCSFN, ∑R) was also calculated theoretically. The received data depicts that the lowest ∑R was achieved for TM10 glasses, where ∑R = 0.0193 cm2 g-1, while TM45 possesses the highest ERCSFN where ∑R = 0.0215 cm2 g-1.

Development of Long-Life Asphalt Pavements Method Using High Modulus Asphalt Mixes (고강성 기층재를 적용한 장수명 아스팔트포장 공법 개발)

  • Lee Jung-Hun;Lee Hyun-Jong
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.49-61
    • /
    • 2006
  • This study suggests long-life asphalt pavement method which can save maintenance cost by increasing the design and performance period of pavements. The high modulus asphalt binder developed and then various physical tests are performed. Laboratory performance tests and accelerated pavement test are conducted for the high modulus and conventional mixtures. The test results show that dynamic modulus values of high modulus mixtures are higher than those of the conventional mixtures, The high modulus mixtures yield better fatigue, rutting and moisture damage performance than conventional mixtures. Structural analysis is performed and a database is built up for long life asphalt pavement design. Pavement response model is developed through a multiple regression analysis program, SPSS using the database. A design software for the long life pavements is developed based on the pavement response model and laboratory and field performance tests results. In addition, optimum pavement sections and materials are suggested. The suggested AC thickness of long life asphalt pavement is 29cm. A Life cycle cost analysis(LCCA) is conducted to check the economical efficiency of the long life pavement section. The LCCA result shows that initial construction costs of long life and conventional pavements are almost equal, but long life pavement is more profitable in terms of the LCCA.

  • PDF

Proposed Limit State Design Method for Encased Composite Columns (매립형 합성기둥의 한계상태설계법 제안)

  • Kim, WonKi
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.523-533
    • /
    • 1997
  • Current limit state design method for encased composite columns contains irrational and uncertain design equations in defining section and material properties of composite members. Through investigating previous research used in formulating the design equation, this paper explores the irrationality and uncertainty such as 1) transformation of yield stress and elastic modulus for composite section, 2) an equation influencing buckling strength in terms of area rather than moment of inertia, and 3) selection of larger radius of gyration between steel and concrete sections. Improving the design equations this paper proposes two design methods which can be directly used in practical design.

  • PDF

A Study on the Wear of Rotary Blades (로타리 경운날의 마모에 관한 연구)

  • Choi, S.I.;Kim, J.H.;Lee, Y.K.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.1
    • /
    • pp.15-20
    • /
    • 1993
  • Wearness has been a major failure criterion in Korean-made rotary blade. However, few studies have been conducted to improve it. In this study, the fundamental data obtained from the measurement of wearness and failure of rotary blade were analyzed to provide a guideline for the design of rotary blades. For the straight part(about 20-23 em from bolt hole) from the bolt hole to bending point of rotary blade, modifications were proposed for improvements, however, for the portion from bending point to tip was made no design recommendations because the failure behavior of that portion was difficult to analyze with the experimental data. The results are summarized as follows. 1. The current V-shape section has to be moved about 5 em toward the bending point of rotary blade. 2. The section modulus at the portion about 5-7 em distant from bolt hole has to be increased about 15-20 %. 3. The V-shape section has to be changed into U-shape to reduce the on account of recieving initial stress in blades. 4. The radius of curvature of the neck(the portion about 5-7 cm apart from bolt hole) has to be made larger to decrease the stress concentration.

  • PDF