DOI QR코드

DOI QR Code

LOGARITHMIC CAPACITY UNDER CONFORMAL MAPPINGS OF THE UNIT DISC

  • Chung, Bohyun (Mathematics Section, College of Science and Technology Hongik University)
  • Received : 2010.03.29
  • Accepted : 2010.06.01
  • Published : 2010.09.30

Abstract

If P(f, r) is the set of endpoints of radii which have length greater than or equal to r > 0 under a conformal mapping f of the unit disc. Then for large r, the logarithmic capacity of P(f, r), $\frac{1}{\sqrt[2]{r}}{\leq}cap(P(f,r)){\leq}\frac{k}{\sqrt{r}}$. Where k is the positive constant.

Keywords

Acknowledgement

Supported by : Hongik University

References

  1. L. V. Ahlfors, Conformal Invariants. Topics in Geometric Function Theory, McGraw-Hill, New York, 1973.
  2. L. V. Ahlfors and L. Sario, Riemann Surfaces, Princeton Math. Ser., 26, Prince- ton Univ. Press, Prinston, N. J., 1960.
  3. A. Beurling, Ensembles exceptionnels, Acta Math. 72 (1940), 1-13. https://doi.org/10.1007/BF02546325
  4. Bo-Hyun, Chung, Some results for the extremal lengths of curve families (II), J. Appl. Math. and Computing. 15 (2004), no. 1-2, 495-502.
  5. Bo-Hyun, Chung, Some applications of extremal length to analytic functions, Commun. Korean Math. Soc. 21 (2006), no.1, 135-143. https://doi.org/10.4134/CKMS.2006.21.1.135
  6. Bo-Hyun, Chung, Extremal length and geometric inequalities, J. Chungcheong Math. Soc. 20 (2007), 147-156.
  7. F. W. Gehring and W. K. Hayman, An inequality in the theory of conformal mapping, J. Math. Pures Appl. (9) 41 (1962), 353-361.
  8. A. Pfluger, Extremallangen und Kapazitat, Comm. Math. Helv. 29 (1955), 120-131. https://doi.org/10.1007/BF02564275
  9. C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, Berlin, 1992.
  10. L. Sario and K. Oikawa, Capacity Functions, Springer-Verlag, New York, 1969.