• Title/Summary/Keyword: Section Damage

Search Result 571, Processing Time 0.023 seconds

Field Investigation of Debris Flow Hazard Area on the Roadside and Evaluating Efficiency of Debris barrier

  • Lee, Jong Hyun;Lee, Jung Yub;Yoon, Sang Won;Oak, Young Suk;Kim, Jae Jeong;Kim, Seung Hyun
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.439-447
    • /
    • 2015
  • In this study, specific sections vulnerable to debris flow damage were selected, and a complete enumeration survey was performed for the sections with debris flow hazards. Based on this, the characteristics of the sections with debris flow hazards and the current status of actions against debris flow were examined, and an efficient installation plan for a debris flow damage prevention method that is required in the future was suggested. The results indicated that in the Route 56 section where the residential density is relatively higher between the two model survey sections, facilities for debris flow damage reduction were insufficient compared to those in the Route 6 section which is a mountain area. It is thought that several sites require urgent preparation of a facility for debris flow damage reduction. In addition, a numerical analysis showed that for debris barriers installed as a debris flow damage prevention method, distributed installation of a number of small-scale barriers facilities within a valley part was more effective than single installation of a large-scale debris barrier at the lower part of a valley.

Estimation of Drift Ratio by Damage Level for Flexural RC Piers With Circular Cross-Section Based on Experimental Data in Korea (실험자료를 기반한 국내 원형단면 철근콘크리트 휨교각의 손상수준 별 횡변위비 산정)

  • Nam, Hyeonung;Hong, Kee-Jeung;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.255-265
    • /
    • 2022
  • In order to determine fragility curves, the limit state of piers for each damage level is suggested in this paper based on the previous test results in Korea, including our test results. In previous studies, the quantitative measures for damage levels of piers have been represented by curvature ductility, lateral drift ratio, or displacement ductility. These measures are transformed to lateral drift ratios of piers for consistency, and the transformed values are compared and verified with our push-over test results for flexural RC piers with a circular cross-section. The test specimens are categorized concerning the number of lap-splices in the plastic hinge region and whether seismic design codes are satisfied or not. Based on the collected test results in Korea, including ours, the lateral drift ratio for each pier damage level is suggested.

Evaluation of Rail Surface Defects Considering Vehicle Running Characteristics (열차주행특성을 고려한 레일표면결함 분석)

  • Jung-Youl Choi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.845-849
    • /
    • 2024
  • Currently, rail surface defects are increasing due to the aging of urban railway rails, but in the detailed guidelines for track performance evaluation established by the country, rail surface damage is inspected with the naked eye of an engineer and with simple measuring tools. It is very important to discover defects in the rail surface through periodic track tours and visual inspection. However, evaluating the severity of defects on the rail surface based on the subjective judgment of the inspector has significant limitations in predicting damage inside the rail. In this study, the characteristics of cracks inside the rail due to rail surface damage were studied. In field measurements, rail surface damage was selected, old rail samples were collected in the acceleration and braking sections, and a scanning electron microscope (SEM) was used to evaluate the rail surface damage was used to analyze the crack characteristics. As a result of the analysis, the crack mechanism caused by the running train and the crack characteristics of the acceleration section where cracks occur at an angle rising toward the rail surface were experimentally proven.

A model for damage analysis of concrete

  • Cao, Vui V.;Ronagh, Hamid R.
    • Advances in concrete construction
    • /
    • v.1 no.2
    • /
    • pp.187-200
    • /
    • 2013
  • The damage level in structures (global scale), elements (intermediate scale) and sections (local scale) can be evaluated using a single parameter called the "Damage Index". Part of the damage attributed to the local scale relates to the damage sustained by the materials of which the section is made. This study investigates the damage of concrete subjected to monotonic compressive loading using four different damage models - one proposed here for the first time and three other well-known models. The analytical results show that the proposed model is promising yet simple and effective for evaluating the damage of concrete. The proposed damage model of concrete with its promising characteristics indicated, appears to be a useful tool in the damage assessment of structures made of concrete.

Damage Effects on the Natural Frequency of Concrete Pier (구체손상에 따른 콘크리트 교각의 고유진동수 변화)

  • Park, Byung-Cheal;Oh, Keum-Ho;Park, Seung-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.335-338
    • /
    • 2005
  • This study was performed to verify that the impact vibration test on the damaged concrete pier can be adopted for assessment of the bridge substructure integrity. Using the experimental modal analysis, the dynamic property changes of the concrete pier are investigated according to the damage levels which are modeled by the loss of cross section area of the pier body. As a result of the impact vibration test, it is found that the natural frequency of the bridge substructure is reduced due to the damage on the pier such as loss of cross section area, and the natural frequency can be used for assessment of the integrity index.

  • PDF

Evaluation of Mechanical Backside Damage of Silicon Wafer by Minority Carrier Recombination Lifetime and Photo-Acoustic Displacement Method

  • Park, Chi-Young;Cho, Sang-Hee
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.155-159
    • /
    • 1997
  • We investigated the effect of mechanical backside damage in Czochralski silicon wafer. The intensity of mechanical damage were evaluated by minority carrier recombination lifetime by a laser excitation/microwave reflection photoconductance decay method, photo-acoustic displacement method, X-ray section topography, and wet oxidation/preferential etch methods. The data indicate that the higher the mechanical damage intensity, the lower the minority carrier lifetime, and the photoacoustic displacement values are also increased proportionally.

  • PDF

Health monitoring of a new hysteretic damper subjected to earthquakes on a shaking table

  • Romo, L.;Benavent-Climent, A.;Morillas, L.;Escolano, D.;Gallego, A.
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.485-509
    • /
    • 2015
  • This paper presents the experimental results obtained by applying frequency-domain structural health monitoring techniques to assess the damage suffered on a special type of damper called Web Plastifying Damper (WPD). The WPD is a hysteretic type energy dissipator recently developed for the passive control of structures subjected to earthquakes. It consists of several I-section steel segments connected in parallel. The energy is dissipated through plastic deformations of the web of the I-sections, which constitute the dissipative parts of the damper. WPDs were subjected to successive histories of dynamically-imposed cyclic deformations of increasing magnitude with the shaking table of the University of Granada. To assess the damage to the web of the I-section steel segments after each history of loading, a new damage index called Area Index of Damage (AID) was obtained from simple vibration tests. The vibration signals were acquired by means of piezoelectric sensors attached on the I-sections, and non-parametric statistical methods were applied to calculate AID in terms of changes in frequency response functions. The damage index AID was correlated with another energy-based damage index -ID- which past research has proven to accurately characterize the level of mechanical damage. The ID is rooted in the decomposition of the load-displacement curve experienced by the damper into the so-called skeleton and Bauschinger parts. ID predicts the level of damage and the proximity to failure of the damper accurately, but it requires costly instrumentation. The experiments reported in this paper demonstrate a good correlation between AID and ID in a realistic seismic loading scenario consisting of dynamically applied arbitrary cyclic loads. Based on this correlation, it is possible to estimate ID indirectly from the AID, which calls for much simpler and less expensive instrumentation.

Effects of Long-Term Harbor Shutdown and Temporal Operational Stoppage upon Optimal Design of Vertical Breakwater Caisson (장기간의 항만 폐쇄와 일시적 운영 중단이 직립 방파제 케이슨의 최적 설계에 미치는 영향)

  • Suh, Kyung-Duck;Kim, Deok-Lae;Kim, Kyung-Suk
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.2
    • /
    • pp.113-127
    • /
    • 2007
  • In this study, a model to calculate the expected total construction cost is developed that simultaneously considers the rehabilitation cost related to the sliding of the caisson, the economic damage cost due to harbor shutdown in the event of excessive caisson sliding, and the economic damage cost due to temporal operational stoppage by excessive wave overtopping. A discount rate is used to convert the damage costs occurred at different times to the present value. The optimal cross-section of a caisson is defined as the cross-section that requires a minimum expected total construction cost within the allowable limit for the expected sliding distance of the caisson during the lifetime of the breakwater. Two values are used for the allowable limit: 0.3 and 0.1 m. It was found that the economic damage cost due to harbor shutdown by excessive caisson sliding is more critical than the rehabilitation cost of the caisson or the economic damage cost by excessive wave overtopping in the decision of the optimal cross-section. In addition, the optimal cross-section of the caisson was shown to be determined by the allowable limit for the expected sliding distance rather than the minimum expected total construction cost as a larger value is used for the threshold sliding distance of the caisson for harbor shutdown.

Development of a structural integrity evaluation program for elevated temperature service according to ASME code

  • Kim, Nak Hyun;Kim, Jong Bum;Kim, Sung Kyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2407-2417
    • /
    • 2021
  • A structural integrity evaluation program (STEP) was developed for the high temperature reactor design evaluation according to the ASME Boiler and Pressure Vessel Code (ASME B&PV), Section III, Rules for Construction of Nuclear Facility Components, Division 5, High Temperature Reactors, Subsection HB. The program computerized HBB-3200 (the design by analysis procedures for primary stress intensities in high temperature services) and Appendix T (HBB-T) (the evaluation procedures for strain, creep and fatigue in high temperature services). For evaluation, the material properties and isochronous curves presented in Section II, Part D and HBB-T were computerized for the candidate materials for high temperature reactors. The program computerized the evaluation procedures and the constants for the weldment. The program can generate stress/temperature time histories of various loads and superimpose them for creep damage evaluation. The program increases the efficiency of high temperature reactor design and eliminates human errors due to hand calculations. Comparisons that verified the evaluation results that used the STEP and the direct calculations that used the Excel confirmed that the STEP can perform complex evaluations in an efficient and reliable way. In particular, fatigue and creep damage assessment results are provided to validate the operating conditions with multiple types of cycles.

ORGANOPHOSPHATE-INDUCED BRAIN DAMAGE: NECROSIS, APOPTOSIS AND GFAP EXPRESSION

  • Kim, Yun-Bae;Hur, Gyeung-Baeng;Phi, Taek-San;Cheon, Ki-Cheol;Kim, Wang-Soo;Yeon, Gyu-Baek
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.123-123
    • /
    • 2001
  • The distribution of necrotic and apoptotic neural cells, and expression of astrocytic glial fibrillary acidic protein (GFAP) in the brain of rats poisoned intraperitoneally with diisopropylfluorophosphate were investigated. Pyridostigmine bromide (0.1 mg/kg) and atropine methylnitrate (20 mg/kg), which are centrally inactive, were treated intramuscularly 30 min and 10 min, respectively, before diisopropylfluorophosphate (4 - 10 mg/kg) poisoning to reduce the mortality.(omitted)

  • PDF