• Title/Summary/Keyword: Secondary aerosol

Search Result 108, Processing Time 0.027 seconds

Effects of Ultrasonic Standing Wave on the Ultrasonically-atomized Aerosol Flame Injected through a Slit-jet Nozzle (Slit-jet 노즐을 통과한 초음파 무화 에어로졸 화염에 정상초음파가 미치는 영향)

  • Ahn, Hyun Jong;Kang, Yun Hyeong;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.53-60
    • /
    • 2020
  • In liquid-fuel spray combustion, an experimental study was conducted to observe the effect of ultrasonic excitation on the ultrasonically-atomized liquid fuel flame by controlling pressure field through an ultrasonic standing wave. Flame of the ultrasonically-atomized kerosene aerosol was visualized by using a high speed camera, DSLR, and Schlieren photography. The amount of fuel consumed was obtained by a precise flow-rate measurement technique during combustion, through which the ratio of carrier gas (air) to fuel mass was able to be obtained, too. As a result, it could be found that the combustion reaction-rate of the liquid-fuel aerosol was increased by applying an ultrasonic standing wave to the secondary flame zone of the flame.

Measurement of Carbonaceous Species in Fine Particles at Kosan, Cheju Island during the Two Summer Seasons of 1994 and 1995 (제주도 고산에서의 1994~1995년 여름 입자상 탄소농도 측정)

  • 이종훈;백남준;심상규;김용표
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.3
    • /
    • pp.179-191
    • /
    • 1997
  • The concentrations of organic and elemental carbon were determined using fine particle samples collected from Kosan, Cheju Island during the summer seasons of 1994 and 1995. The daily mean concentrations of organic and elemental carbon for each measurement period were 3.74 and 0.27 $\mu\textrm{g}$/㎥ in 1994, while those of 1995 were 2.36 and 0.10 $\mu\textrm{g}$/㎥, respectively The concentrations of organic carbon were higher than those commonly observed from clean areas around the world, but those of elemental carbon were lower than, or comparable to, other clean areas in the world. The resulting ratios of total carbon to elemental carbon at this site were thus higher than those seen from other metropolitan and non-polluted regions abroad. In addition according to our analysis, the 1994 measurement period can be classified into two periods: enhanced (July 20 and August 1) and reduced levels (August 2 and 9) of the carbonaceous species. The observed difference between two periods may be in part accounted for by the air trajectories representing each period. During the former period, the air masses from the Asian continent and Japan were dominant, while the air masses from the North Pacific Ocean came during the latter period. OC/EC ratios at the site were calculated to predict the possible formation of secondary organic aerosol . Based on our observations, we suggest that the formation of secondary organic aerosol might be an important pathway to the production of organic carbons.

  • PDF

Photodegradation of Gaseous Toluene Using Short-Wavelength UV/TiO2 and Treatment of Decomposition Products by Wet Scrubber (단파장자외선/TiO2 공정에 의한 가스상 톨루엔의 분해 및 습식세정장치에 의한 분해생성물의 제거)

  • Jeong, Ju-Young;Jurng, Jong-Soo
    • Journal of Environmental Science International
    • /
    • v.16 no.4
    • /
    • pp.433-440
    • /
    • 2007
  • The photodegradation and by-products of the gaseous toluene with $TiO_2$ (P25) and short-wavelength UV ($UV_{254+185nm}$) radiation were studied. The toluene was decomposed and mineralized efficiently owed to the synergistic effect of photochemical oxidation in the gas phase and photocatalytic oxidation on the $TiO_2$ surface. The toluene by the $UV_{254+185nm}$ photoirradiated $TiO_2$ were mainly mineralized $CO_2$ and CO, but some water-soluble organic intermediates were also formed under severe reaction conditions. The ozone and secondary organic aerosol were produced as undesirable by-products. It was found that wet scrubber was useful as post-treatment to remove water-soluble organic intermediates. Excess ozone could be easily removed by means of a $MnO_2$ ozone-decomposition catalyst. It was also observed that the $MnO_2$ catalyst could decompose organic compounds by using oxygen reactive species formed in process of ozone decomposition.

Characteristics of Background Nanoparticle Concentration in a TiO2 Manufacturing Laboratory (TiO2 제조 실험실에서 나노입자의 배경농도 특징)

  • Park, Seung-Ho;Jung, Jae Hee;Lee, Seung-Bok;Bae, Gwi-Nam;Jie, Hyun Seock;Cho, So-Hye
    • Particle and aerosol research
    • /
    • v.7 no.4
    • /
    • pp.113-121
    • /
    • 2011
  • The aerosol nanoparticles are suspected to be exposed to workers in nanomaterial manufacturing facilities. However, the exposure assessment method has not been established. One of important issues is to characterize background level of nanoparticles in workplaces. In this study, intensive aerosol measurements were made at a $TiO_2$ manufacturing laboratory for five consecutive days in May of 2010. The $TiO_2$ nanoparticles were manufactured by the thermal-condensation process in a heated tube furnace. The particle number size distribution was measured using a scanning mobility particle sizer every 5 min, in order to detect particles ranging from 14.5 to 664 nm in diameter. Total particle number concentration shows a severe diurnal variation irrespective of manufacturing process, which was governed by nanoparticles smaller than 50 nm in diameter. During the background monitoring periods, significant peak concentrations were observed between 2 p.m. and 3 p.m. due to the infiltration of secondary aerosol particles formed by photochemical smog. Although significant increase in nanoparticle concentration was also observed during the manufacturing process twice among three times, these particle peak concentrations were lower than those observed during the background measurement. It is suggested that the investigation of background particle contamination is needed prior to conducting main exposure assessment in nanomaterial manufacturing workplaces or laboratories.

Seasonal Characteristics of Organic Carbon and Elemental Carbon in PM2.5 in Daejeon (대전지역 대기 중 PM2.5의 유기탄소와 원소탄소의 계절별 특성 연구)

  • Kim, Hyosun;Jung, Jinsang;Lee, Jinhong;Lee, Sangil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.1
    • /
    • pp.28-40
    • /
    • 2015
  • To investigate the seasonal variations of carbonaceous aerosol in Daejeon, OC (organic carbon), EC (elemental carbon) and WSOC (water soluble organic carbon) in $PM_{2.5}$ samples collected from March 2012 to February 2013 were analyzed. $PM_{2.5}$ concentrations were estimated by the sum of organic matter ($1.6{\times}OC$), EC, water-soluble ions ($Na^+$, $NH_4{^{+}}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, $SO_4{^{2-}}$, $NO_3{^{-}}$). The estimated $PM_{2.5}$ concentrations were relatively higher in winter ($29.50{\pm}12.04{\mu}g/m^3$) than those in summer ($13.72{\pm}6.92{\mu}g/m^3$). Carbonaceous aerosol ($1.6{\times}OC+EC$) was a significant portion (34~47%) of $PM_{2.5}$ in all season. The seasonally averaged OC and WSOC concentrations were relatively higher in winter ($6.57{\times}3.48{\mu}gC/m^3$ and $4.07{\pm}2.53{\mu}gC/m^3$ respectively), than those in summer ($3.07{\pm}0.8{\mu}gC/m^3$, $1.77{\pm}0.68{\mu}gC/m^3$, respectively). OC was correlated well with WSOC in all season, indicating that they have similar emission sources or formation processes. In summer, both OC and WSOC were weakly correlated with EC and also poorly correlated with a well-known biomass burning tracer, levoglucosan, while WSOC is highly correlated with SOC (secondary organic carbon) and $O_3$. The results suggest that carbonaceous aerosol in summer was highly influenced by secondary formation rather than primary emissions. In contrast, both OC and WSOC in winter were strongly correlated with EC and levoglucosan, indicating that carbonaceous aerosol in winter was closely related to primary source such as biomass burning. The contribution of biomass burning to $PM_{2.5}$ OC and EC, which was estimated using the levoglucosan to OC and EC ratios of potential biomass burning sources, was about $70{\pm}15%$ and $31{\pm}10%$, respectively, in winter. Results from this study clearly show that $PM_{2.5}$ OC has seasonally different chemical characteristics and origins.

Observation of Secondary Organic Aerosol and New Particle Formation at a Remote Site in Baengnyeong Island, Korea

  • Choi, Jinsoo;Choi, Yongjoo;Ahn, Junyoung;Park, Jinsoo;Oh, Jun;Lee, Gangwoong;Park, Taehyun;Park, Gyutae;Owen, Jeffrey S.;Lee, Taehyoung
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.300-312
    • /
    • 2017
  • To improve the understanding of secondary organic aerosol (SOA) formation from the photo-oxidation of anthropogenic and biogenic precursors at the regional background station on Baengnyeong Island, Korea, gas phase and aerosol chemistries were investigated using the Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS) and the Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS), respectively. HR-ToF-AMS measured fine particles ($PM_1$; diameter of particle matter less than $1{\mu}m$) at a 6-minute time resolution from February to November 2012, while PTR-ToF-MS was deployed during an intensive period from September 21 to 29, 2012. The one-minute time-resolution and high mass resolution (up to $4000m{\Delta}m^{-1}$) data from the PTR-ToF-MS provided the basis for calculations of the concentrations of anthropogenic and biogenic volatile organic compounds (BVOCs) including oxygenated VOCs (OVOCs). The dominant BVOCs from the site are isoprene (0.23 ppb), dimethyl sulphide (DMS, 0.20 ppb), and monoterpenes (0.38 ppb). Toluene (0.45 ppb) and benzene (0.32 ppb) accounted for the majority of anthropogenic VOCs (AVOCs). OVOCs including acetone (3.98 ppb), acetaldehyde (2.67 ppb), acetic acid (1.68 ppb), and formic acid (2.24 ppb) were measured. The OVOCs comprise approximately 75% of total measured VOCs, suggesting the occurrence of strong oxidation processes and/or long-range transported at the site. A strong photochemical aging and oxidation of the atmospheric pollutants were also observed in aerosol measured by HR-ToF-AMS, whereby a high $f_{44}:f_{43}$ value is shown for organic aerosols (OAs); however, relatively low $f_{44}:f_{43}$ values were observed when high concentrations of BVOCs and AVOCs were available, providing evidence of the formation of SOA from VOC precursors at the site. Overall, the results of this study revealed several different SOA formation mechanisms, and new particle formation and particle growth events were identified using the powerful tools scanning mobility particle sizer (SMPS), PTR-ToF-MS, and HR-ToF-AMS.

Pollution characteristics of PM2.5 observed during January 2018 in Gwangju (광주 지역에서 2018년 1월 측정한 초미세먼지의 오염 특성)

  • Yu, Geun-Hye;Park, Seung-Shik;Jung, Sun A;Jo, Mi Ra;Jang, Yu Woon;Lim, Yong Jae;Ghim, Young Sung
    • Particle and aerosol research
    • /
    • v.15 no.3
    • /
    • pp.91-104
    • /
    • 2019
  • In this study, hourly measurements of $PM_{2.5}$ and its major chemical constituents such as organic and elemental carbon (OC and EC), and ionic species were made between January 15 and February 10, 2018 at the air pollution intensive monitering station in Gwangju. In addition, 24-hr integrated $PM_{2.5}$ samples were collected at the same site and analyzed for OC, EC, water-soluble OC (WSOC), humic-like substance (HULIS), and ionic species. Over the whole study period, the organic aerosols (=$1.6{\times}OC$) and $NO_3{^-}$ concentrations contributed 26.6% and 21.0% to $PM_{2.5}$, respectively. OC and EC concentrations were mainly attributed to traffic emissions with some contribution from biomass burning emissions. Moreover, strong correlations of OC with WSOC, HULIS, and $NO_3{^-}$ suggest that some of the organic aerosols were likely formed through atmospheric oxidation processes of hydrocarbon compounds from traffic emissions. For the period between January 18 and 22 when $PM_{2.5}$ pollution episode occurred, concentrations of three secondary ionic species ($=SO{_4}^{2-}+NO_3{^-}+NH_4{^+}$) and organic matter contributed on average 50.8 and 20.1% of $PM_{2.5}$, respectively, with the highest contribution from $NO_3{^-}$. Synoptic charts, air mass backward trajectories, and local meteorological conditions supported that high $PM_{2.5}$ pollution was resulted from long-range transport of haze particles lingering over northeastern China, accumulation of local emissions, and local production of secondary aerosols. During the $PM_{2.5}$ pollution episode, enhanced $SO{_4}^{2-}$ was more due to the long-range transport of aerosol particles from China rather than local secondary production from $SO_2$. Increasing rate in $NO_3{^-}$ was substantially greater than $NO_2$ and $SO{_4}^{2-}$ increasing rates, suggesting that the increased concentration of $NO_3{^-}$ during the pollution episode was attributed to enhanced formation of local $NO_3{^-}$ through heterogenous reactions of $NO_2$, rather than impact by long-range transportation from China.

Review on the Recent PM2.5 Studies in China (최근 중국의 초미세먼지 오염 연구 동향)

  • Kim, Yumi;Kim, Jin Young;Lee, Seung-Bok;Moon, Kil-Choo;Bae, Gwi-Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.5
    • /
    • pp.411-429
    • /
    • 2015
  • The Korea Ministry of Environment has established an air quality standard for $PM_{2.5}$ in 2012 and it is effective from January 2015. In this study, we review various aspects of $PM_{2.5}$ in China, including its measurement, modeling, source apportionment, and health effect, and suggest future research directions for $PM_{2.5}$ studies in Korea. Measurements studies for $PM_{2.5}$ have examined organic marker compounds and $^{14}C$ as well as inorganic aerosols for distinguishing sources. Modeling results supported that the control of $PM_{2.5}$ pollution in big city needs effective cooperation between city and its surrounding regions. The major $PM_{2.5}$ sources in China have been identified to be secondary sulfur, motor vehicle emissions, coal combustion, dust, biomass burning, and industrial sources, however, they have seasonal dependency. Especially, the severe haze pollution event during January 2013 over eastern and northern China was driven to a large extent by secondary aerosol formation. Short-term exposure to $PM_{2.5}$ is strongly associated with the increased risk of morbidity and mortality from cardiovascular and respiratory diseases, as well as total non-accidental mortality. Considered previous $PM_{2.5}$ studies in China, analysis of specific organic species using online measurement, chamber experiment for secondary aerosol formation mechanism, and development of parameterizing this process in the model are needed to elucidate factors governing the abundance and composition of $PM_{2.5}$ in Korea.

Characteristics of Organic Carbon Species in Atmospheric Aerosol Particles at a Gwangju Area During Summer and Winter (여름 및 겨울철 광주지역 대기 에어로졸 입자의 유기탄소 특성)

  • Park, Seung-Shik;Hur, Jai-Young;Cho, Sung-Y.;Kim, Seung-J.;Kim, Young-Joon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.675-688
    • /
    • 2007
  • To characterize organic and elemental carbon (OC and EC), and water-soluble organic carbon (WSOC) contents, daily $PM_{2.5}$ measurements were performed in August 2006 (summer) and Jan $11{\sim}Feb$ 12 2007 (winter) at an urban site of Gwangju. Daily size-segregated aerosol samples were also collected for WSOC analysis. No clear seasonal variations in EC and WSOC concentrations were observed, while seasonal differences in OC concentration, and OC/EC and WSOC/EC ratios were shown. The WSOC/OC ratio showed higher value in summer (0.56) than in winter (0.40), reflecting the greater enhancement of secondary WSOC formation at the site in summer. Secondary WSOC concentrations estimated using EC tracer method were in the range $0.0{\sim}2.1\;{\mu}g/m^3$ (average $0.42\;{\mu}g/m^3$) and $0.0{\sim}1.1\;{\mu}g/m^3\;(0.24\;{\mu}g/m^3)$, respectively, accounting for $0{\sim}51.6%$ (average 16.8%) and $0{\sim}52.5%$ (average 13.1 %) of the measured WSOC concentrations in summer and winter. Sometimes higher WSOC/OC ratio in winter than that in summer could be attributed to two reasons. One is that the stable atmospheric condition often appears in winter, and the prolonged residence time would strengthen atmospheric oxidation of volatile organic compounds. The other is that decrease of ambient temperature in winter would enhance the condensation of volatile secondary WSOC on pre-existing aerosols. In summertime, atmospheric aerosols and WSOC concentrations showed bimodal size distributions, peaking at the size ranges $0.32{\sim}0.56\;{\mu}m$ (condensation mode) and $3.2{\sim}5.6\;{\mu}m$ (coarse mode), respectively. During the wintertime, atmospheric aerosols showed a bimodal character, while WSOC concentrations showed a unimodal pattern. Size distributions of atmospheric aerosols and WSOC with a peak in the size range $0.32{\sim}0.56\;{\mu}m$ were observed for most of the measurement periods. On January 17, however, atmospheric aerosols and WOSC exhibited size distributions with modal peaks in the size range $1.0{\sim}1.8\;{\mu}m$, suggesting that the aerosol particles collected on that day could be expected to be more aged, i.e, longer residence time, than the aerosols at other sampling periods.