• Title/Summary/Keyword: Second hole

Search Result 211, Processing Time 0.035 seconds

TSV Formation using Pico-second Laser and CDE (피코초 레이저 및 CDE를 이용한 TSV가공기술)

  • Shin, Dong-Sig;Suh, Jeong;Cho, Yong-Kwon;Lee, Nae-Eung
    • Laser Solutions
    • /
    • v.14 no.4
    • /
    • pp.14-20
    • /
    • 2011
  • The advantage of using lasers for through silicon via (TSV) drilling is that they allow higher flexibility during manufacturing because vacuums, lithography, and masks are not required; furthermore, the lasers can be applied to metal and dielectric layers other than silicon. However, conventional nanosecond lasers have disadvantages including that they can cause heat affection around the target area. In contrast, the use of a picosecond laser enables the precise generation of TSVs with a smaller heat affected zone. In this study, a comparison of the thermal and crystallographic defect around laser-drilled holes when using a picosecond laser beam with varing a fluence and repetition rate was conducted. Notably, the higher fluence and repetition rate picosecond laser process increased the experimentally recast layer, surface debris, and dislocation around the hole better than the high fluence and repetition rate. These findings suggest that even the picosecond laser has a heat accumulation effect under high fluence and short pulse interval conditions. To eliminate these defects under the high speed process, the CDE (chemical downstream etching) process was employed and it can prove the possibility to applicate to the TSV industry.

  • PDF

Energy efficient watchman based flooding algorithm for IoT-enabled underwater wireless sensor and actor networks

  • Draz, Umar;Ali, Tariq;Zafar, Nazir Ahmad;Alwadie, Abdullah Saeed;Irfan, Muhammad;Yasin, Sana;Ali, Amjad;Khattak, Muazzam A. Khan
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.414-426
    • /
    • 2021
  • In the task of data routing in Internet of Things enabled volatile underwater environments, providing better transmission and maximizing network communication performance are always challenging. Many network issues such as void holes and network isolation occur because of long routing distances between nodes. Void holes usually occur around the sink because nodes die early due to the high energy consumed to forward packets sent and received from other nodes. These void holes are a major challenge for I-UWSANs and cause high end-to-end delay, data packet loss, and energy consumption. They also affect the data delivery ratio. Hence, this paper presents an energy efficient watchman based flooding algorithm to address void holes. First, the proposed technique is formally verified by the Z-Eves toolbox to ensure its validity and correctness. Second, simulation is used to evaluate the energy consumption, packet loss, packet delivery ratio, and throughput of the network. The results are compared with well-known algorithms like energy-aware scalable reliable and void-hole mitigation routing and angle based flooding. The extensive results show that the proposed algorithm performs better than the benchmark techniques.

Trust-aware secure routing protocol for wireless sensor networks

  • Hu, Huangshui;Han, Youjia;Wang, Hongzhi;Yao, Meiqin;Wang, Chuhang
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.674-683
    • /
    • 2021
  • A trust-aware secure routing protocol (TSRP) for wireless sensor networks is proposed in this paper to defend against varieties of attacks. First, each node calculates the comprehensive trust values of its neighbors based on direct trust value, indirect trust value, volatilization factor, and residual energy to defend against black hole, selective forwarding, wormhole, hello flood, and sinkhole attacks. Second, any source node that needs to send data forwards a routing request packet to its neighbors in multi-path mode, and this continues until the sink at the end is reached. Finally, the sink finds the optimal path based on the path's comprehensive trust values, transmission distance, and hop count by analyzing the received packets. Simulation results show that TSRP has lower network latency, smaller packet loss rate, and lower average network energy consumption than ad hoc on-demand distance vector routing and trust based secure routing protocol.

Thermal Analyses of Deep Geological Disposal Cell With Heterogeneous Modeling of PLUS7 Spent Nuclear Fuel

  • Hyungju Yun;Min-Seok Kim;Manho Han;Seo-Yeon Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.517-529
    • /
    • 2023
  • The objectives of this paper are: (1) to conduct the thermal analyses of the disposal cell using COMSOL Multiphysics; (2) to determine whether the design of the disposal cell satisfies the thermal design requirement; and (3) to evaluate the effect of design modifications on the temperature of the disposal cell. Specifically, the analysis incorporated a heterogeneous model of 236 fuel rod heat sources of spent nuclear fuel (SNF) to improve the reality of the modeling. In the reference case, the design, featuring 8 m between deposition holes and 30 m between deposition tunnels for 40 years of the SNF cooling time, did not meet the design requirement. For the first modified case, the designs with 9 m and 10 m between the deposition holes for the cooling time of 40 years and five spacings for 50 and 60 years were found to meet the requirement. For the second modified case, the designs with 35 m and 40 m between the deposition tunnels for 40 years, 25 m to 40 m for 50 years and five spacings for 60 years also met the requirement. This study contributes to the advancement of the thermal analysis technique of a disposal cell.

The Characteristics of Microstructure and the Mechanical Properties of Multi-Phase Sheet Steel. (다상조직강의 기계적 성질과 조직특성)

  • Park, Jong-Hyeon;Gang, Gye-Myeong;Song, Jin-Tae
    • Korean Journal of Materials Research
    • /
    • v.1 no.3
    • /
    • pp.115-124
    • /
    • 1991
  • In this study, the relationship between mechanical properties and the effects of second phase in tri-phase steel which was composed of ferrite-martensite-bainite was investigated. In order to obtain different microstructure of ferrite+martensite(DP), ferrite+bainite(F+B), and ferrite+martensite+bainite(TP, different heat treatment has been accomplished. The effects of volume fraction and microstructure of each specimen were studied on tensile property, Charpy impact energy and stretch-flangeability. As the bainite content in triphase steels increased, the tensile strength, and yield strength decreased as well as the reduction of area and strength-uniform elongation increased. However, ferrite-bainite steel had high yield ratio and yield point elongation. The Charpy impact energy of TP and F+B steel was higher than that of DP steel. In addition, the characteristics of hole expanding limit($\lambda$) of TP steel and F+B steel were higher than that of DP steel. These mechanical properties of tri-phase steel have been improved, because bainite could be deformed easily within ferrite matrix. The effect of bainite on ductility in tri-phase steel has been found to be favorable. In this experiment, tri-phase steel contained within 27% bainite volume fraction had good nechanical properties and superior stretch-flangeability.

  • PDF

A Study on the Spatial Characteristics of Golf Courses (골프코스의 공간적 특성에 관한 연구)

  • Kim, Chung-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.4
    • /
    • pp.15-26
    • /
    • 2008
  • The purpose of this study is to attempt to interpret golf courses as event-generating spaces with consideration given to the time factor. Through a golf game, a variety of events such as the tee shot, second shot, putt, and hole out are generated. These events have been connected to a series of events after hole out such as birdie, par, bogey and so on. The series of events do not always occur in the same way. They reveal unexpected changes over time. These unexpected changes cause changes in the spatial characteristics and offer unforgettable memories for golfers. Gilles Deleuze mentioned the spatial characteristics as striated space and smooth space. Striated space can be defined as sedentary space. It is distant vision-optical space that has dimensional, metric and centered characteristics, whereas smooth space is defined as nomadic, close vision-haptic space that has directional and acentered characteristics. This study focused on the analysis of spatial characteristics according to striated space and smooth space. Golf courses generally show the characteristics of striated space before beginning the game. As soon as the game begins, however, the golf courses are converted into an event-generating space. The characteristics of striated space are transformed into smooth space, a nomadic space that amplifies the dynamic, changeable, de-scaled and non-metric system. Through the whole game, this transformation is dramatically repeated. On the other hand, the golfer, the subject of the game, senses the phenomenological experience in the process of orientation, center, definition, and domestication.

Consideration on how to build on AndongJotap-ri five-story brick pagoda using the building methodology of a stone pagoda between the 7th~9th century (7~9세기 석탑조영방법을 통해 본 안동 조탑리 오층전탑의 조영방법 고찰)

  • Kim, Sang-Gu;Lee, Jeong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.744-754
    • /
    • 2015
  • Buddhist temple construction at East Asia is considered one of the most important architecture activities together with the capital city and palace, where the pagoda is positioned at the center of a Buddhist temple as the most important element of Buddhist architecture enshrining Buddha's Sary. Accordingly, this study was performed to examine the procedure of how to build brick pagodas through the stone pagoda's internal structure between $7^{th}{\sim}9^{th}$ century while disassembling and repairing Andong Jotap-ri five-story brick pagoda. As a result, as the brick pagoda destruction phenomenon, there was a slip phenomenon by side forces, member's plastic temperature, and mixed material differences. Second, like a stone pagoda, brick pagoda is classified and constructed by the design and structural parts. According to the analysis, the design part is formed by the most edge brick, and the structure part places stone material at the buffer zone in the design brick from most edge brick and intra-center, i.e., at the space to support a side force while the top weight is vertically led. When building a brick pagoda, putting a wood pole at inside center plays the role as holding parts. In addition, the center axis is connected to the bottom of the steel pole hole, A steel pole hole has holes to safely settle down and decide the position. Because of them, the steel pole is self-loaded, which may be installed by wood rather than immovable steel.

Automatic Prostate Segmentation in MR Images based on Active Shape Model Using Intensity Distribution and Gradient Information (MR 영상에서 밝기값 분포 및 기울기 정보를 이용한 활성형상모델 기반 전립선 자동 분할)

  • Jang, Yu-Jin;Hong, Helen
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.2
    • /
    • pp.110-119
    • /
    • 2010
  • In this paper, we propose an automatic segmentation of the prostate using intensity distribution and gradient information in MR images. First, active shape model using adaptive intensity profile and multi-resolution technique is used to extract the prostate surface. Second, hole elimination using geometric information is performed to prevent the hole from occurring by converging the surface shape to the local optima. Third, the surface shape with large anatomical variation is corrected by using 2D gradient information. In this case, the corrected surface shape is often represented as rugged shape which is generated by the limited number of vertices. Thus, it is reconstructed by using surface modelling and smoothing. To evaluate our method, we performed the visual inspection, accuracy measures and processing time. For accuracy evaluation, the average distance difference and the overlapping volume ratio between automatic segmentation and manual segmentation by two radiologists are calculated. Experimental results show that the average distance difference was 0.3${\pm}$0.21mm and the overlapping volume ratio was 96.31${\pm}$2.71%. The total processing time of twenty patient data was 16 seconds on average.

A System Model of Iterative Image Reconstruction for High Sensitivity Collimator in SPECT (SPECT용 고민감도 콜리메이터를 위한 반복적 영상재구성방법의 시스템 모델 개발)

  • Bae, Seung-Bin;Lee, Hak-Jae;Kim, Young-Kwon;Kim, You-Hyun;Lee, Ki-Sung;Joung, Jin-Hun
    • Journal of radiological science and technology
    • /
    • v.33 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • Low energy high resolution (LEHR) collimator is the most widely used collimator in SPECT imaging. LEHR has an advantage in terms of image resolution but has a difficulty in acquiring high sensitivity due to the narrow hole size and long septa height. Throughput in SPECT can be improved by increasing counts per second with the use of high sensitivity collimators. The purpose of this study is to develop a system model in iterative image reconstruction to recover the resolution degradation caused by high sensitivity collimators with bigger hole size. We used fan-beam model instead of parallel-beam model for calculation of detection probabilities to accurately model the high sensitivity collimator with wider holes. In addition the weight factors were calculated and applied onto the probabilities as a function of incident angle of incoming photons and distance from source to the collimator surface. The proposed system model resulted in the equivalent performance with the same counts (i.e. in shortened acquisition time) and improved image quality in the same acquisition time. The proposed method can be effectively applied for resolution improvement of pixel collimator of next generation solid state detectors.

Phase Equilibria and Processing of Pb_2Sr_2(Y_{1-x}Ca_x)Cu_3O_{8+\delta} Superconductors (x=0.4-0.6) (Pb_2Sr_2(Y_{1-x}Ca_x)Cu_3O_{8+\delta}초전도체 (x=0.4-0.6)의 제조방법 및 상평형)

  • Park, Young-il;Dongwoon Jung
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.723-731
    • /
    • 1995
  • P $b_2$S $r_2$( $Y_{1-x}$ C $a_{x}$)C $u_3$ $O_{8+}$$\delta$/ samples were prepared with x=0.4~0.6 and small $\delta$. To minimize the extent of oxidative decomposition reaction which occurs during the preparation of this phase, two annealing steps were adopted : First, sintered samples of P $b_2$S $r_2$( $Y_{1-x}$ C $a_{x}$)C $u_3$ $O_{8+}$$\delta$/ are oxygenated under 100% $O_2$, which leads to a large $\delta$(e.g., $\delta$=1.8). Second, the resulting samples are deoxygenated under 0.1~1.0% $O_2$in $N_2$, lowering $\delta$ to desired values. This two-step annealing procedure minimized the extent of oxidative decomposition. However, even with the two-step annealing procedure, the oxidative decomposition of P $b_2$S $r_2$( $Y_{1-x}$ C $a_{x}$)C $u_3$ $O_{8+}$$\delta$/ cannot be completely suppressed if $\delta$ is to be reduced to maximize $T_{c}$. Electrical resistivity data show that $T_{c}$(onset) is a function of hole concentration in the Cu $O_2$layer, and the optimum hole concentration for the maximum $T_{c}$ is achieved when $Ca^{2+}$is substituted for $Y^{3+}$between 0.5 and 0.6 A $T_{c}$(onset)=80K has been observed for one such sample, and this is the highest $T_{c}$(onset) yet reported for this compound.ed for this compound.nd.

  • PDF