• Title/Summary/Keyword: Seawater corrosion

Search Result 269, Processing Time 0.024 seconds

Effect of cavitation on surface damage of 16.7Cr-10Ni-2Mo stainless steel in marine environment (해양 환경 하에서 16.7Cr-10Ni-2Mo 스테인리스강의 표면 손상에 미치는 캐비테이션의 영향)

  • Chong, Sang-Ok;Han, Min-Su;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.239-246
    • /
    • 2015
  • Stainless steel is generally known to have characteristics of excellent corrosion resistance and durability, but in a marine environment it can suffer from localized corrosion due to the breakdown of passivity film due to chloride ion in seawater. Furthermore, the damage behaviors are sped up under a cavitation environment because of complex damage from electrochemical corrosion and cavitation-erosion. In this study the characteristics of electrochemical corrosion and cavitation erosion behavior were evaluated on 16.7Cr-10Ni-2Mo stainless steel under a cavitation environment in natural seawater. The electrochemical experiments have been conducted at both static conditions and dynamic conditions inducing cavitation with different current density parameters. The surface morphology and damage behaviors were compared after the experiment. After the cavitation test with time variables morphological examinations on damaged specimens were analyzed by using a scanning electron microscope and a 3D microscope. the galvanostatic experiment gave a cleaner surface morphology presented with less damage depth at high current density regions. It is due to the effect of water cavitation peening under the cavitation condition. In the cavitation experiment, with amplitude of $30{\mu}m$ and seawater temperature of $25^{\circ}C$, weight loss and cavitation-erosion damage depth were dramatically increased after 5 hours inducing cavitation.

Evaluation of Corrosion Fatigue Crack Propagation Characteristics at Equivalent Potential of Zinc Sacrificial Anode (아연(Zn)희생양극 등가전위에서 부식피로균열 진전특성에 관한 연구)

  • Won Beom Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.363-368
    • /
    • 2024
  • Steel structures used in marine environments, such as ships, offshore structures or sub-structures in wind power generation facilities are prone to corrosion. In this study, the corrosion fatigue crack propagation characteristics due to the environmental load are examined by experiment at -1050 mV vs. SCE, which is equivalent to the anti-corrosion potential of zinc anodes that are widely used as sacrificial anodes. In this study, for this purpose, an experimental study is conducted on the effect of cathodic protection on the propagation of fatigue cracks in the seawater environment under the condition of -1050 mV vs. SCE, considering the wave period in synthetic seawater. Cathodic protection prevents corrosion; however, excessive protection generates hydrogen through chemical reactions as well as calcareous deposits. The fatigue crack propagation rate appeared to be faster than the rate in a seawater corrosion environment at the early stages of the experiment. As the crack length and stress intensity factor K increased, the crack propagation rate became slower than the fatigue crack propagation rate in seawater. However, the crack growth rate was faster than that in the atmosphere.

Effect of Corrosion Characteristics in Relation to Loaded Stress in the Welded Zone of A5083-H116 Aluminum Alloy (A5083-H116 알루미늄 합금재 용접부의 부하응력에 따른 부식특성의 영향)

  • Jo, S.K.;Kong, Y.S.;Kim, Y.D.
    • Journal of Power System Engineering
    • /
    • v.8 no.3
    • /
    • pp.44-51
    • /
    • 2004
  • Effect of corrosion characteristics in relation to loaded stress in the welded zone of A5083-H116 aluminum alloy, in the seawater was studied. The corrosion experiment was performed for 120 hours on the specimens in the natural seawater tank with four steps of the loaded stress. The corrosion crack, corrosion rate, electrode potential, current, and corrosion pattern, etc. were examined for the specimens with the elapse of the immersion time. The main result derived from this study is the crack growth length is increased with the increasing loaded stress. The electrode potential and the corrosion current are decreased rapidly in the early stage of the corrosion, and then decreased gradually and stabilized eventually with the elapse of the immersion time. The test condition of the longer crack growth tends to show the higher corrosion rate. Corrosion pattern of the welded zone indicates that the depth and width of the pitting become increasing with the increasing loaded stress.

  • PDF

Electrochemical Evaluation of Corrosion Property of Welded Zone of Seawater Pipe by DC Shielded Metal Arc Welding with Types of Electrodes (선박 해수배관에서 용접봉의 종류에 따라 직류 아크 용접한 용접부위의 부식특성에 관한 전기화학적 평가)

  • Lee, Sung-Yul;Lee, Kyu-Hwan;Won, Chang-Uk;Na, Shane;Yoon, Young-Gon;Lee, Myeong-Hoon;Kim, Yun-Hae;Moon, Kyung-Man;Kim, Jin-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.79-84
    • /
    • 2013
  • The seawater pipes in the engine rooms of ships are surrounded by severely corrosive environments caused by fast flowing seawater containing chloride ions, high conductivity, etc. Therefore, it has been reported that seawater leakage often occurs at a seawater pipe because of local corrosion. In addition, the leakage area is usually welded using shielded metal arc welding with various electrodes. In this study, when seawater pipes were welded with four types of electrodes(E4311, E4301, E4313, and E4316), the difference between the corrosion resistance values in their welding zones was investigated using an electrochemical method. Although the corrosion potential of a weld metal zone welded with the E4316 electrode showed the lowest value compared to the other electrodes, its corrosion resistance exhibited the best value compared to the other electrodes. In addition, a heat affected zone welded with the E4316 electrode also appeared to have the best corrosion resistance among the electrodes. Furthermore, the corrosion resistance of the weld metal zone and heat affected zone exhibited relatively better properties than that of the base metal zone in all of the cases welded with the four types of electrodes. Furthermore, the hardness values of all the weld metal zones were higher than the base metal zone.

Corrosion evaluation of a newly developed high-strength steel in marine environments

  • Jeong, Jin-A;Ko, Kwon-Heum;Lee, Du-Young;Lee, Sang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.10
    • /
    • pp.883-887
    • /
    • 2016
  • This study aims to evaluate the corrosion behavior of a newly developed high-strength steel in marine environments. Metals used in seawater are easily deteriorated because of the presence of corrosive species such as chloride ions in it. Seawater causes much higher corrosion than fresh water. Thus, the corrosion of steel in marine environment has been recognized as a crucial problem in designing structures which cannot be cathodically protected. In this study, the corrosion resistance of a newly developed high-strength steel was evaluated. Four different specimens were tested to confirm the corrosion resistance. The exposure corrosion test was carried out by exposing the specimens to different marine environments such as atmospheric, tidal, splash, and submerged zones for two years. The specimens taken out from each location were cleaned ultrasonically and chemically prior to the evaluation of their corrosion resistance by the weight loss method. Finally, the pitting depth of the specimens was also measured to evaluate their pitting corrosion. The conditions used for the corrosion test were similar to the environmental conditions. The corrosion test results revealed that the corrosion rate and pitting corrosion of the newly developed high-strength steel was lower than that of the other carbon steels.

Erosion Corrosion Characteristics of Al5052-O and Al6061-T6 Aluminum Alloys with Flow Rate of Seawater (해수 유속 변화에 따른 Al5052-O와 Al6061-T6 알루미늄 합금의 침식부식 특성)

  • Kim, Young-Bok;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.292-299
    • /
    • 2019
  • The hull material of a high-speed ship may cause erosion damage from fluid impact. When physical erosion and electrochemical corrosion combine, erosion corrosion damage occurs. The aluminum ship is vulnerable to erosion corrosion because it can be operated at high speed. Thus, in this study, Al5052-O and Al6061-T6 aluminum alloys for the marine environment were selected as experimental materials. The erosion corrosion resistance of Al5052-O and Al6061-T6 aluminum alloys in seawater was investigated by an erosion test and potentiodynamic polarization test at the various flow rate (0 m/s, 5 m/s, 10 m/s, 15 m/s, 20 m/s). Erosion corrosion characteristics were evaluated by surface analysis, 3D analysis, SEM analysis, and the Tafel extrapolation method. The results of surface damage analysis after the erosion test showed that Al6061-T6 presented better erosion resistance than Al5052-O. The results of the potentiodynamic polarization test at the various flow rate, corrosion current density by Tafel extrapolation presented lower values of Al6061-T6 than Al5052-O. Al5052-O showed more surface damage than Al6061-T6 at all flow rates. Consequently, Al6061-T6 presented better erosion corrosion resistance than Al5052-O. The results of this study are valuable data for selecting hull material for an aluminum alloy vessel.

Corrosion Characteristics of Reinforced Steel Bar Emedded in Multiple Mortar Specimen(W/C:0.5) Aged 5 Years in Seawater

  • Moon, Kyung-Man;Takeo, Oki;Won, Jong-Pil;Park, Dong-Hyun;Kim, Yun-Hae
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.1
    • /
    • pp.33-37
    • /
    • 2013
  • Reinforced concrete structures have been increasingly widely used in numerous industrial fields. These structures are often exposed to severely corrosive environments such as seawater, contaminated water, acid rain, and the seashore. Thus, the corrosion problems that occur with the steel bars embedded in concrete are very important from the safety and economic points of view. In this study, the effects of the cover thickness on the corrosion properties of reinforced steel bars embedded in multiple mortar test specimens immersed in seawater for 5 years were investigated using electrochemical methods such as the corrosion potentials, polarization curves, cyclic voltammograms, galvanostat, and potentiostat. The corrosion potentials shifted in the noble direction, and the value of the AC impedance also exhibited a higher value with increasing cover thickness. Furthermore, the polarization resistance increased with increasing cover thickness, which means that the oxide film that is deposited on the surface of a steel bar surrounded by alkali environment exhibits better corrosion resistance because the water, chloride ions and dissolved oxygen have difficulty penerating to the surface of the steel bar with increasing cover thickness. Consequently, it is considered that the corrosion resistance of reinforced steel can be improved by increasing the cover thickness. However, the corrosion resistance values of a steel bar estimated by measuring the corrosion potential, impedance and polarization resistance were not in good agreement with its corrosion resistance obtained by polarization curves.

Corrosion Characteristics of Cast Stainless Steel under Plasma Ion Nitriding Process Temperature in Marine Environment (주조 스테인리스강의 해양환경 하에서 플라즈마 이온질화 공정온도에 따른 부식특성 연구)

  • Chong, Sang-Ok;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.504-509
    • /
    • 2017
  • In order to improve corrosion resistance for cast stainless steel in seawater, the characteristics of corrosion resistance after plasma ion nitriding was investigated. Plasma ion nitriding process was conducted in a mixture of nitrogen of 25% and hydrogen of 75% at substrate temperature ranging from 350 to $500^{\circ}C$ for 10 hours using pulsed-DC glow discharge plasma with working pressure of 250 Pa in vacuum condition. Corrosion tests were carried out for as-received and plasma ion nitrided specimens. The corrosion characteristics were investigated by measurement of weight loss and observation of surface morphology. In anodic polarization experiment, relatively less damage depth and weight loss were presented at a nitrided temperature of $400^{\circ}C$, attributing to the formation of S-phase.

Evaluation on Potentiostatic Characteristics of Al-4.06Mg-0.74Mn Alloy with Cavitation Environment in Seawater (Al-4.06Mg-0.74Mn 합금의 해수 내 캐비테이션 환경에 따른 정전위 특성 평가)

  • Lee, Seung-Jun;Han, Min-Su;Jang, Seok-Ki;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.272-277
    • /
    • 2012
  • The hull of a fast sailing aluminium ship are generally prone to erosion owing to the impact of seawater. At this time, synergistic effects of the erosion and the corrosion by aggressive ions such as chlorides tend to aggravate the damage. There have been various attempts, including selection of erosion-resistant materials, cathodic protection and addition of corrosion inhibitors, to overcome damage by erosion or corrosion under marine environments. These approaches, however, have limits on identifying the damage mechanism clearly, because they depend on analogical interpretation by correlating two damage behaviors after the individual studies are assessed. In this research, it was devised a hybrid testing apparatus that integrates electrochemical corrosion test and cavitation test, and thus the erosion-corrosion behavior by cavitation was investigated more reliably. As a result, the slightest damage was observed at the potentials between -1.6 V and -1.5 V. This is considered to be due to a reflection or counterbalancing effect caused by collision of the cavitation cavities and the hydrogen gas formed by activation polarization.

Effects of Different Paints on Steel Rods Anticorrosion of Reinforced Concrete in Salt Water (해수에서 철근콘크리트의 철근 방식에 대한 도료의 효과)

  • 이신호;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.25 no.2
    • /
    • pp.67-75
    • /
    • 1983
  • The objectives of this paper were to measure the bond strengths of reinforced concrete in which the steel rods were coated with five different kinds of anticorrosion paints, and to compare their prevention effects in salt water. The paints used in the study were epoxy resin I . II . III, Z.R. P., and silicone resin, which were applied at rates recommended by the manufacturers. The bond strengths were measured on the 7-, 14-, and 28-th days after molding. Corrosion conditions of coated steel plate under fresh water, seawater, 10 % salt water, and 20% salt water, were inspected every month during four months test peoriods, respectively. The results obtained from tests are summarized as follows: 1. Paint-coating may reduce the bond strengths of reinforced concrete. Silicone resin paint showed some 20% reduction in the strength compared to those without the paint. However, the other paints seemed not to significantly affect the strength. 2. Picture analyses showed that epoxy resin I and II significantly prevented corrosion steel plates in seawater. Epoxy resin I and silicone resin coating did not do a good job in corrosion prevention. Z.R. P. paint was found to be moderate as preventive coating paint. 3. Varying soluble salt contents had little effects on the corrosion prevention of tested paints. 4. Epoxy resin I and II were found to be appropriate as a coating material to prevent the corrosion of steel rods in seawater. Z.R.P. may also be used for the purpose.

  • PDF